
z/OS
2.5

MVS Program Management: User's Guide
and Reference

IBM

SA23-1393-50

Note

Before using this information and the product it supports, read the information in “Notices” on page
219.

This edition applies to Version 2 Release 5 of z/OS® (5650-ZOS) and to all subsequent releases and modifications until
otherwise indicated in new editions.

Last updated: 2021-09-30
© Copyright International Business Machines Corporation 1991, 2021.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... xi

Tables..xv

About this information... xvii
Required product knowledge... xvii
Required publications...xvii
Related publications... xvii
Referenced publications...xvii
Notational conventions..xviii
z/OS information..xix

Additional information... xix

How to send your comments to IBM...xxi
If you have a technical problem..xxi

Summary of changes... xxiii
Summary of changes for z/OS MVS Program Management: User's Guide and Reference for Version

2 Release 5 (V2R5)... xxiii
Summary of changes... xxiii
Summary of changes... xxiv

Chapter 1. Introduction... 1
z/OS Program Management components..1

The binder...3
The Program Management loader..4
The linkage editor... 5
The batch loader...5

Using utilities for Program Management... 5
IEBCOPY... 5
IEHPROGM..6
IEHLIST...6

Using service aids for Program Management..6
AMBLIST... 6
AMASPZAP..6

Program objects: Features and processing characteristics..7
Program object structure... 7
Program objects on DASD storage... 7
Residence for and access to program objects...8
Extensions to the PM loader to support program objects...8
LLA and checkpoint/restart support for program objects...9

Chapter 2. Creating programs from source modules..11
Combining modules... 11

Symbols.. 12
Sections.. 13
Classes..13
Common areas... 14
Parts..14

 iii

Pseudoregisters..15
Entry points.. 15
External symbols.. 16

Object and program module structure..16
External symbol dictionary.. 17
Relocation dictionary... 18
Text... 19
Identification data.. 19
Module attributes... 19

Binder batch processing.. 19
Input and output.. 19
Creating a program module... 20
Program object formats... 23
Binding..27
Creation of an executable program in virtual storage... 29

Addressing and residence modes... 29
Addressing mode..29
Residence mode...30
AMODE and RMODE hierarchy... 30
AMODE and RMODE combinations.. 31
AMODE and RMODE validation.. 31
AMODE and RMODE for overlay programs.. 31

Module reusability... 31
Binder extensions supporting the Language Environment...32

Compatibility with prelinker functions...32

Chapter 3. Starting the binder..35
Invoking the binder with JCL... 35

Binder JCL example..35
EXEC statement..36
DD statements..37
Binder cataloged procedures...42

Invoking the binder under TSO..44
Invoking the binder from the z/OS UNIX Shell... 44
Invoking the Binder from a program... 44

Chapter 4. Defining input to the binder...45
Defining the primary input...46

Object modules, load modules and program objects... 46
Control statements...47
Modules and control statements... 47

Secondary (included) input... 48
Including sequential data sets...50
Including UNIX Files.. 50
Including library members...51
Including concatenated data sets... 52

Resolving external references... 53
Incremental autocall.. 54
Autocall with C370lib data sets... 54
Autocall with archive libraries..54
Autocall matching for C370LIB and archive libraries ...55
Searching the link pack area.. 55
Dynamic symbol resolution..56
Specifying automatic call libraries...56
Directing external references to a specific library...56
NCAL option: Negating the automatic library call... 58
Renaming..58

iv

Chapter 5. Editing data within a program module... 59
Editing conventions..59

Entry points.. 59
Placement of control statements.. 60
Identical old and new symbols.. 60

Changing external symbols..60
Using the CHANGE statement..60
Example of changing external symbols... 60

Replacing sections... 61
Automatic replacement..61
Using the REPLACE statement to replace sections and named common areas................................ 63

Deleting external symbols... 64
Ordering sections or named common areas... 65
Aligning sections or named common areas on page boundaries...66

Chapter 6. Binder options reference... 69
Specifying binder options.. 69

Special rules for JCL EXEC statements..70
Special rules for options files...71

Binder options..71
AC: Authorization code option... 76
ALIASES: ALIASES option.. 76
ALIGN2: 2KB page alignment option...76
AMODE: Addressing mode option..77
CALL: Automatic library call option..77
CASE: Case control option... 77
COMPAT: Binder level option... 78
COMPRESS: Compression option...80
DC: Downward compatible option... 81
DCBS option..81
DYNAM: DYNAM option.. 81
EDIT: Edit option...82
EP: Entry point option...83
EXITS: Specify exits to be taken option...83
EXTATTR: Specify extended attributes..83
FETCHOPT: Fetching mode option...84
FILL: Fill character option.. 85
GID: Specify group ID...85
HOBSET: Set high order bit option...85
INFO: Info option..85
LET: Let execute option.. 86
LINECT: Line count option..86
LIST: Listing option...86
LONGPARM: Long parameter option..87
LISTPRIV: List unnamed sections option.. 87
MAP: Program module map option..87
MAXBLK: Maximum block size option... 88
MODMAP: Module map option...88
MSGLEVEL: Message level option.. 88
NAME: NAME option...89
OL: Only-loadable option... 89
OPTIONS: Options option.. 89
OVLY: Overlay option.. 89
PATHMODE: Set z/OS UNIX file access attributes for SYSLMOD.. 90
PRINT: Diagnostic messages option..91
RES: Search link pack area option... 91

 v

REUS: Reusability options..91
RMODE: Residence mode option... 92
RMODEX: Extended residence mode option... 93
SCTR: Scatter load option.. 94
SIGN: SIGN option... 94
SIZE: Space specification option... 94
SSI: System status index option.. 95
STORENX: Store not-executable module.. 95
STRIPCL: Remove class option.. 96
STRIPSEC: Remove section option.. 96
SYMTRACE: Symbol resolution tracing..97
TERM: Alternate output option.. 97
TEST: Test option..98
TRAP: Error recovery.. 98
UID: Specify user ID...99
UPCASE: UPCASE option..99
WKSPACE: Working space specification option...99
XCAL: Exclusive call option.. 100
XREF: Cross reference table option...100

Chapter 7. Binder control statement reference... 101
Binder syntax conventions.. 101

Syntax errors.. 102
Rules for comments... 102
Placement information.. 103

ALIAS statement..103
Example..105

ALIGNT statement...105
Example..106

AUTOCALL statement.. 106
Example..107

CHANGE statement... 107
Examples.. 108

ENTRY statement...109
Example..110

EXPAND statement.. 110
Example..111

IDENTIFY statement... 111
Example..112

IMPORT statement.. 112
Example..113

INCLUDE statement...114
Example 1...115
Example 2...116

INSERT statement... 116
Example..117

LIBRARY statement... 117
Examples.. 119

MODE statement..120
Example..121

NAME statement..121
Example..122

ORDER statement..122
Example..123

OVERLAY statement.. 123
Example..124

PAGE statement...125

vi

Example..125
RENAME statement... 126

Example..127
REPLACE statement.. 127

Example..128
SETCODE statement.. 128

Example..129
SETOPT statement...129
SETSSI statement..130

Chapter 8. Interpreting binder listings..131
Header..131
Input event log...131
Private section list... 132
Program module map.. 132

Simple module... 133
The removed classes and sections report.. 137
Renamed-symbol cross-reference table.. 137
Cross-reference table..138
Imported and exported symbol table... 139
Operation summary...140
The Long-symbol abbreviation table...143
Short mangled name report.. 144
Abbreviation/Demangled name report... 144
DDname versus Pathname cross reference report...145
Binder service level report.. 145
The message summary report.. 145

Chapter 9. Binder serviceability aids.. 147
Binder output data sets...147

Binder output data sets and their contents...147
The IEWDIAG data set... 148
The IEWTRACE data set...148
The IEWDUMP data set..151
The IEWGOFF data set...153
The AMBLIST service aid... 153
The IDCAMS printing utility..154
c89 and ld diagnosis.. 154
Serviceability aids for the Binder API interface.. 155

Appendix A. Using the linkage editor and batch loader..157
Creating programs from source modules... 157

AMODE and RMODE differences..157
Unsupported input module formats and contents..157

Invoking the linkage editor and batch loader... 158
Invoking the linkage editor and batch loader with JCL...158
Invoking the linkage editor from a program.. 158
Invoking the batch loader from a program..159
Invoking the linkage editor and batch loader under TSO... 160

Editing a control section.. 161
Replacing control sections...161
Deleting an external symbol.. 161

Control statement reference... 161
Continuing a statement..161
ALIAS statement.. 161
CHANGE statement..161
ENTRY statement... 161

 vii

EXPAND statement.. 161
IDENTIFY statement..161
INCLUDE statement... 162
LIBRARY statement..162
NAME statement.. 162
ORDER statement.. 162
REPLACE statement... 162
Unsupported binder control statements... 162

Processing and attribute options reference..162
Supported binder options.. 162
LIST: Listing control..163
MAP and XREF..163
Reusability..163
SIZE: Space specification.. 163
Not-Executable attribute... 164
Incompatible processing and attribute options..164

Linkage editor requirements... 164
Virtual storage requirements... 165

Batch loader requirements..166
Interpreting linkage editor output...167

Diagnostic output... 167
Output listing header... 167
Module disposition messages..168
Error/Warning messages..168
Sample diagnostic output.. 169
Optional output.. 170
Linkage editor return codes... 172

Interpreting batch loader output.. 172
Batch loader return codes... 173
Loader serviceability aids.. 174

Appendix B. Summary of Program Management user considerations................... 177
Migrating from the linkage editor to the binder.. 177

SMP/E precautions... 177
Storage considerations using the binder...177
Error handling in the binder... 178
Changes and extensions in output using the binder... 178
Binder control statements and options...179
Binder processing differences from the linkage editor...179
Other binder processing differences... 180

Migrating from load modules to program objects.. 181
What should be converted to program objects?... 182
Converting load modules to program objects... 182
Compatibility of program object formats.. 182
Utilities, components and products that support program objects... 183
PDSE program library directory access of program objects... 183

Migrating from the prelinker..184
The binder incorporates Language Environment/370 prelinker functions...................................... 184
Support for DLL modules in dynamic link libraries... 186

Migrating from the prelinker and to DLLs..186
Migrating from the prelinker to Binder.. 186
Migration of applications to DLL support...187

Appendix C. Binder return codes.. 189
IEWBLINK return and reason codes... 189
IEWBLDGO return codes... 189

viii

Appendix D. Designing and specifying overlay programs..................................... 191
Design of an overlay program..191

Single region overlay program... 192
Multiple region overlay program..200

Specification of an overlay program..202
Region origin...204
Control section positioning.. 204
Special options...207

Special considerations.. 208
Common areas... 208
Automatic replacement... 209
Storage requirements.. 209
Overlay communication... 210

Appendix E. Accessibility...215
Accessibility features.. 215
Consult assistive technologies.. 215
Keyboard navigation of the user interface.. 215
Dotted decimal syntax diagrams...215

Notices..219
Terms and conditions for product documentation... 220
IBM Online Privacy Statement.. 221
Policy for unsupported hardware..221
Minimum supported hardware..221
Programming interface information..222
Trademarks.. 222

Glossary.. 223

Index.. 229

 ix

x

Figures

1. Using Program Management components to create and load programs.. 2

2. Preparing source modules for execution and executing the program...12

3. Section/class/element/structure..14

4. External names and external references..16

5. Input and output for the binder.. 20

6. A program object produced by the binder..21

7. Multiple segments...28

8. Use of the external symbol dictionary.. 28

9. Binder JCL example.. 35

10. Processing of one INCLUDE control statement..49

11. Processing of nested INCLUDE control statements...49

12. Editing a module... 59

13. Changing an external reference and an entry point...61

14. Automatic replacement of sections..63

15. Replacing a section with the REPLACE control statement.. 64

16. Deleting a section..65

17. Ordering sections.. 66

18. Aligning sections on page boundaries..67

19. Example of special rules for JCL EXEC statements... 71

20. Example of special rules for JCL EXEC statements... 71

21. Overlay structure for INSERT statement example...117

22. Example of an output module for the ORDER statement.. 123

23. Example of an overlay structure for the OVERLAY statement...124

 xi

24. Example of an output module for the PAGE statement...126

25. Sample binder input event log..132

26. Sample binder private section list report...132

27. Sample binder module map (Part 1 of 2)... 134

28. Sample binder module map (Part 2 of 2)... 135

29. Sample binder module map - Overlay (Part 1 of 2)... 136

30. Sample binder module map - Overlay (Part 2 of 2)... 137

31. Sample binder renamed-symbol cross-reference...138

32. Sample binder cross-reference table...139

33. Sample binder imported and exported symbols table.. 140

34. Sample binder save operation summary (part 1).. 142

35. Sample binder save operation summary (part 2).. 143

36. Sample binder load operation summary..143

37. Sample binder long-symbol abbreviation table...143

38. Sample binder short mangled name report... 144

39. Sample binder abbreviation/demangled names report...144

40. Message summary report (variable truncated)..146

41. Trace sample...149

42. EWDUMP sample – Workmod token area.. 152

43. Incompatible processing and attribute options...164

44. Diagnostic messages issued by the linkage editor.. 170

45. Linkage editor module map and cross-reference table...171

46. Batch loader module map.. 173

47. Invoking the prelinker...185

48. Prelinker elimination...186

xii

49. Control section dependencies..193

50. Single-region overlay tree structure...194

51. Length of an overlay module.. 195

52. Segment origin and use of storage...196

53. Inclusive and exclusive segments..197

54. Inclusive and exclusive references.. 198

55. Location of segment and entry tables in an overlay module...199

56. Control sections used by several paths... 201

57. Overlay tree for multiple-region program.. 202

58. Symbolic segment origin in single-region program... 203

59. Symbolic segment and region origin in multiple-region program... 204

60. Common areas before processing..208

61. Common areas after processing...209

 xiii

xiv

Tables

1. Rules for binder symbols.. 12

2. z/OS system releases, their corresponding program management levels, and features added.............. 23

3. Binder DDNAMES.. 37

4. SYSLIN data set DCB parameters...38

5. SYSPRINT and SYSLOUT DCB parameters... 39

6. SYSDEFSD DCB parameters..41

7. INCLUDE and LIBRARY control statements DCB parameters... 42

8. Summary of processing and attribute options... 72

9. Binder data sets and their contents... 147

10. APPPTRT dump data...152

11. Filelist diagnostic entries..155

12. Linkage editor capacities for minimal SIZE values (96KB, 6KB)...165

13. Batch loader virtual storage requirements.. 167

14. Linkage editor return codes..172

15. Batch loader return codes.. 173

16. IEWBLINK return codes..189

17. IEWBLDGO return codes.. 190

18. Branch sequences for overlay programs..211

19. Use of the SEGLD macro instruction.. 212

20. Use of the SEGWT macro instruction... 212

 xv

xvi

About this information

This book is intended to help you learn about and use the end user interfaces provided by the program
management component of z/OS. Program management helps you create and execute programs on z/OS.
IBM® recommends that you use the program management binder to perform these functions. The linkage
editor and the batch loader are older components of program management that, while still supported by
IBM, are no longer under development.

• Chapters 1 through 5 of this book provide an overview of linking and editing and are recommended
reading for all users.

• Chapter 6 provides options that give you more control over the binding process.
• Chapter 7 provides reference material for the binder control statements.
• Chapter 8 provides reference material for interpreting binder output.
• Chapter 9 provides information about binder serviceability aids.
• Appendix A contains information about using the linkage editor and batch loader.
• Appendix B provides a summary of considerations when migrating from the Linkage Editor, load module

format, and the Prelinker to Binder and its program format.
• Appendix C provides information about Binder Return Codes.
• Appendix D contains information about Overlay Programs.
• Appendix E contains information on accessibility features in z/OS.
• Notices contains notices, programming information, and trademarks.

Required product knowledge
To use this book effectively in an MVS™ batch environment, you should be familiar with MVS job control
language.

Required publications
You should be familiar with the information presented in the following publications:

Publication title Order number

z/OS MVS JCL Reference SA23-1385

z/OS MVS JCL User's Guide SA23-1386

Related publications
The following publications might be helpful:

Publication title Order number

z/OS MVS Program Management: Advanced Facilities SA23-1392

z/OS DFSMS Using Data Sets SC23-6855

z/OS MVS Diagnosis: Reference GA32-0904

Referenced publications
Within the text, references are made to other z/OS books and books for related products. The titles and
order numbers are listed in the following table:

© Copyright IBM Corp. 1991, 2021 xvii

Publication title Order number

z/OS MVS Program Management: Advanced Facilities SA23-1392

z/OS DFSMSdfp Utilities SC23-6864

z/OS MVS Programming: Assembler Services Guide SA23-1368

z/OS MVS Programming: Authorized Assembler Services Guide SA23-1371

z/OS MVS Diagnosis: Tools and Service Aids GA32-0905

z/OS MVS JCL User's Guide SA23-1386

z/OS MVS System Messages, Vol 7 (IEB-IEE) SA38-0674

z/OS MVS System Messages, Vol 8 (IEF-IGD) SA38-0675

z/OS XL C/C++ Programming Guide SC14-7315

z/OS XL C/C++ User's Guide SC14-7307

z/OS UNIX System Services Command Reference SA23-2280

Notational conventions
A uniform notation describes the syntax of the control statements documented in this publication. This
notation is not part of the language; it is merely a way of describing the syntax of the statements. The
statement syntax definitions in this book use the following conventions:
[]

Brackets enclose an optional entry. You can, but need not, include the entry. Examples are:

• [length]
• [MF=E]

|
A vertical bar separates alternative entries. When shown inside brackets, you can use one or none of
the entries separated by the bar. Examples are:

• [REREAD | LEAVE]
• [length | 'S']

{ }
Braces enclose alternative entries. You must use one, and only one, of the entries. Examples are:

• BFTEK={S | A}
• {K | D}
• {address | S | O}

Sometimes alternative entries are shown in a vertical stack of braces. An example is:

MACRF={{(R[C | P])}
 {(W[C | P | L])}
 {(R[C],W[C])}}

In the preceding example, you must choose only one entry from the vertical stack.

…
An ellipsis indicates that the entry immediately preceding the ellipsis can be repeated. For example:

• (dcbaddr,[(options)],. . .)

‘ ’
A ‘ ’ indicates that a blank (an empty space) must be present before the next parameter.

xviii About this information

UPPERCASE BOLDFACE
Uppercase boldface type indicates entries that you must code exactly as shown. These entries
consist of keywords and the following punctuation symbols: commas, parentheses, and equal signs.
Examples are:

• CLOSE , , , ,TYPE=T
• MACRF=(PL,PTC)

UNDERSCORED UPPERCASE BOLDFACE
Underscored uppercase boldface type indicates the default used if you do not specify any of the
alternatives. Examples are:

• [EROPT={ACC | SKP | ABE}]
• [BFALN={F | D}]

Lowercase Italic
Lowercase italic type indicates a value to be supplied by you, the user, usually according to
specifications and limits described for each parameter. Examples are:

• number
• image-id
• count

z/OS information
This information explains how z/OS references information in other documents and on the web.

When possible, this information uses cross document links that go directly to the topic in reference using
shortened versions of the document title. For complete titles and order numbers of the documents for all
products that are part of z/OS, see z/OS Information Roadmap.

To find the complete z/OS library, go to IBM Documentation (www.ibm.com/docs/en/zos).

Additional information
You might also need the following information:

Short Title Used in This Document Title Order Number

SNA Sync Point Services
Architecture

Systems Network Architecture Sync Point Services
Architecture Reference

SC31-8134

About this information xix

https://www.ibm.com/docs/en/zos

xx z/OS: z/OS MVS Program Management: User's Guide and Reference

How to send your comments to IBM

We invite you to submit comments about the z/OS product documentation. Your valuable feedback helps
to ensure accurate and high-quality information.

Important: If your comment regards a technical question or problem, see instead “If you have a technical
problem” on page xxi.

Submit your feedback by using the appropriate method for your type of comment or question:
Feedback on z/OS function

If your comment or question is about z/OS itself, submit a request through the IBM RFE Community
(www.ibm.com/developerworks/rfe/).

Feedback on IBM Documentation function
If your comment or question is about the IBM Documentation functionality, for example search
capabilities or how to arrange the browser view, send a detailed email to IBM Documentation Support
at ibmdocs@us.ibm.com.

Feedback on the z/OS product documentation and content
If your comment is about the information that is provided in the z/OS product documentation library,
send a detailed email to mhvrcfs@us.ibm.com. We welcome any feedback that you have, including
comments on the clarity, accuracy, or completeness of the information.

To help us better process your submission, include the following information:

• Your name, company/university/institution name, and email address
• The following deliverable title and order number: z/OS MVS Program Management: User's Guide and

Reference, SA23-1393-50
• The section title of the specific information to which your comment relates
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive authority to use or distribute the
comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the
issues that you submit.

If you have a technical problem
If you have a technical problem or question, do not use the feedback methods that are provided for
sending documentation comments. Instead, take one or more of the following actions:

• Go to the IBM Support Portal (support.ibm.com).
• Contact your IBM service representative.
• Call IBM technical support.

© Copyright IBM Corp. 1991, 2021 xxi

http://www.ibm.com/developerworks/rfe/
http://www.ibm.com/developerworks/rfe/
mailto:ibmdocs@us.ibm.com
mailto:mhvrcfs@us.ibm.com
http://support.ibm.com

xxii z/OS: z/OS MVS Program Management: User's Guide and Reference

Summary of changes

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line to the left
of the change.

Note: IBM z/OS policy for the integration of service information into the z/OS product documentation
library is documented on the z/OS Internet Library under IBM z/OS Product Documentation
Update Policy (www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/ibm-zos-doc-update-policy?
OpenDocument).

Summary of changes for z/OS MVS Program Management: User's
Guide and Reference for Version 2 Release 5 (V2R5)

The following content is new, changed, or no longer included in V2R5.

New
The following content is new.

• None

Changed
The following content is changed.

• None

Deleted
The following content was deleted.

• The following topic was removed: "The Program Management transport utility"
• All references to IEWTPORT were removed.

Summary of changes in z/OS Version 2 Release 4 (V2R4)
The following changes are made to z/OS Version 2 Release 4 (V2R4).

New
Prior to January 2021 refresh

Examples were added to the CHANGE statement, see “Examples” on page 108.

Changed
2021 refresh

The description for the ORDER statement was changed. For more information, refer to “ORDER
statement” on page 122.
The syntax description for RMODEX was changed. For more information, refer to “RMODEX: Extended
residence mode option” on page 93
The description for the residence mode ANY option was changed, refer to “Residence mode” on page
30.

© Copyright IBM Corp. 1991, 2021 xxiii

https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/ibm-zos-doc-update-policy?OpenDocument
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/ibm-zos-doc-update-policy?OpenDocument
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/ibm-zos-doc-update-policy?OpenDocument

Prior to January 2021 refresh
The COMPAT option has been updated, see “Program object formats” on page 23 and “COMPAT:
Binder level option” on page 78 for more information.

Summary of changes in z/OS Version 2 Release 3 (V2R3)
The following changes are made to z/OS Version 2 Release 3 (V2R3).

New
The binder now supports RMODE64. The following topics contain new information for this support:

• Chapter 1, “Introduction,” on page 1
• Chapter 2, “Creating programs from source modules,” on page 11
• Chapter 6, “Binder options reference,” on page 69
• Chapter 7, “Binder control statement reference,” on page 101
• Appendix A, “Using the linkage editor and batch loader,” on page 157

xxiv z/OS: z/OS MVS Program Management: User's Guide and Reference

Chapter 1. Introduction

z/OS provides program management services that let you create, load, modify, list, read, and copy
executable programs. With the program management binder, you can create executable modules in either
of two formats and store them (depending on the format) in PDS or PDSE libraries, or in z/OS UNIX files.
The two types of executable modules are load modules and program objects and may collectively be
referred to as 'program modules'. Of these two formats, program objects are the newer. Program objects
remove many of the restrictions of the load module format and support new functionality. You can use
the z/OS loader to load saved program modules into virtual memory for execution. You can also use the
program management binder to build and execute a program in virtual storage in a single step (with some
restrictions).

z/OS continues to support the older linkage editor and batch loader programs. However, the program
management binder is a functional replacement for these older programs and has many additional
enhancements. Because subsequent releases of z/OS might not support these components, IBM strongly
recommends you use the binder exclusively. In addition, the program management binder is a functional
replacement for the Language Environment® prelinker, although z/OS continues to support the use of the
prelinker as a separate intermediate step between compilation and binding for the relevant language
translators.

This topic contains an overview of the services provided by each program management component. It
also lists other z/OS programs that support program management tasks.

z/OS Program Management components
Although program management components provide many services, they are used primarily to convert
object modules into executable programs, store them in program libraries, and load them into virtual
storage for execution.

You can use the program management binder and program management loader to perform these tasks.
These components can also be used in conjunction with the linkage editor. A load module produced by
the linkage editor can be accepted as input by the binder or can be loaded into storage for execution
by the program management binder. The linkage editor can also process load modules produced by the
binder.

Figure 1 on page 2 shows how the program management components work together and how each one
is used to prepare an executable program.

Introduction

© Copyright IBM Corp. 1991, 2021 1

Batch
loader

Source
modules

Assembler
or compiler

Object
modules

Program
management

binder

Program object
in

PDSE
program library

or z/OS UNIX file

Linkage
editor

Load module
in

PDS
program library

Program
management

loader

Program
in virtual storage

ready for execution

Figure 1. Using Program Management components to create and load programs

Introduction

2 z/OS: z/OS MVS Program Management: User's Guide and Reference

The binder
The binder converts the output of language translators and compilers into an executable program unit
that can either be read directly into virtual storage for execution or stored in a program library.

Binding program modules
You can use the binder to:

• Convert object or load modules, or program objects, into a program object and store the program object
in a partitioned data set extended (PDSE) program library or in a z/OS UNIX file.

• Convert object or load modules, or program objects, into a load module and store the load module in
a partitioned data set (PDS) program library. This is equivalent to what the linkage editor can do with
object and load modules.

• Convert object or load modules, or program objects, into an executable program in virtual storage and
execute the program. This is equivalent to what the batch loader can do with object and load modules.

The binder processes object modules, load modules and program objects, link-editing or binding multiple
modules into a single load module or program object. Control statements specify how to combine the
input into one or more load modules or program objects with contiguous virtual storage addresses. Each
object module can be processed separately by the binder, so that only the modules that have been
modified need to be recompiled or reassembled. The binder can create programs to be loaded into
24-bit, 31-bit, or 64-bit address storage (for example, RMODE=24, RMODE=ANY (31) or RMODE=64)
and programs that execute in 24-bit, 31-bit, or 64-bit addressing mode (including support for 8-byte
address constants). The binder can also create overlay load modules or program objects (see Appendix D,
“Designing and specifying overlay programs,” on page 191). Programs can be stored in program libraries
and later brought into virtual storage by the program management loader.

The binder can also combine basic linking and loading services into a single job step. It can read object
modules, load modules and program objects from program libraries into virtual storage, relocate the
address constants, and pass control directly to the program upon completion. When invoked in this way,
the binder does not store any of its output in program libraries after preparing it for execution. Like the
batch loader, you can use the binder for high-performance loading of modules that do not need to be
stored in a program library.

Enhancements to the binder
The binder also provides the following enhancements compared to the linkage editor:

• Support for single and multi-segment program objects
• Support for object module format GOFF
• Easing or elimination of many linkage editor restrictions
• Application programming interface for binding programs
• Increased usability

Program objects
Depending on the library type specified by SYSLMOD, the binder creates either program objects or
load modules. Program objects include and extend the functions of load modules. They are stored in
partitioned data set extended (PDSE) program libraries or z/OS UNIX files instead of partitioned data set
program libraries and have fewer restrictions than load modules. For example, a program object can have
a text size of up to 1 gigabyte, whereas the text size of a load module is limited to 16 MB. The block
size of a program object is also fixed, eliminating the need to reblock when you copy programs between
devices. You can use IEBCOPY to convert between program objects and load modules, as described in
“Using utilities for Program Management” on page 5.

Program objects support an unlimited number of data classes, representing multiple text classes,
additional control information and user or compiler-specified data known as ADATA. Program text, the
instructions and data that constitute the executable portion of the module, can be divided into class

Introduction

Chapter 1. Introduction 3

segments, each of which can be loaded into separate storage locations. Associated Data (ADATA) is
information about the module that is created by the language translator but not required for linking,
loading, or execution. Virtually any type of data that is associated with a module or its constituent
sections can be saved in a program object. Some restrictions apply.

Object module support
The binder supports a modified extended object module (XOBJ) and an object module format called
generalized object file format (GOFF). Both XOBJ and GOFF support long names and reentrant C modules.
In addition, GOFF format supports multipart modules, ADATA, and XPLINK enabled code.

Additionally, the binder supports C reentrant modules, dynamic linking, and dynamic link libraries. All
object module formats can be stored as sequential files, as members of PDS or PDSE libraries or
members of z/OS UNIX archive libraries.

Fewer restrictions
The binder and program objects ease or eliminate many restrictions of the linkage editor and load
modules. The linkage editor limited aliases to 64 and external names to 32767. With the binder, the
number of aliases and external names for programs stored in a PDSE or z/OS UNIX file is limited only by
the space available to store them.

For program objects, external names (those entry points in one section that can be referenced from
another section or module or from the operating system) can be up to 32767 bytes in length. Long names
can be used for section names, external labels and references, pseudoregisters and common areas, and
(limited to 1024 bytes) aliases and alternate entry points for the module. Primary or member names are
still limited to eight bytes, however, as are member names appearing in JCL or system macros. For z/OS
UNIX-resident program objects, z/OS UNIX name length restrictions apply.

Application Programming Interface
The binder also provides the ability for programs to invoke the binder and request services individually.
Binder services can be invoked directly, allowing your programs to access, update, and print the
contents of load modules and program objects. For specific information on using the binder application
programming interface, see z/OS MVS Program Management: Advanced Facilities.

Usability improvements
The binder provides other usability improvements over the linkage editor and batch loader. Messages
and diagnostics have been enhanced, producing diagnostic output that is more detailed and easier to
understand than the output of the linkage editor. Binder listings are also improved, printing out more
complete information about the run that produced a module, including enhancements to the module map
and cross reference table and a summary of the data sets used.

There have also been usability improvements (from the linkage editor) in the binder processing options
and attributes. A replaceable CSECT in the binder allows the system programmer to establish default
options and attributes for the system or installation. In addition, a SETOPT binder control statement
allows users to vary attributes by module when the binder is creating multiple load modules or program
objects.

The Program Management loader
The program management loader increases the services of the program fetch component by adding
support for loading program objects. The program management loader reads both program objects and
load modules into virtual storage and prepares them for execution. It relocates any address constants in
the program to point to the appropriate areas in virtual storage and supports 24-bit, 31-bit, and 64-bit
addressing ranges.

All program objects loaded from a PDSE are page-mapped into virtual storage. When loading program
objects from a PDSE, the loader selects a loading mode based on the module characteristics and
parameters specified to the binder when you created the program object. You can influence the mode

Introduction

4 z/OS: z/OS MVS Program Management: User's Guide and Reference

with the binder FETCHOPT parameter. The FETCHOPT parameter allows you to select whether the
program is completely preloaded and relocated before execution, or whether pages of the program can be
read into virtual storage and relocated only when they are referenced during execution. (See “FETCHOPT:
Fetching mode option” on page 84 for more information on the FETCHOPT parameter.) z/OS UNIX
System Services are called to load a program object from a z/OS UNIX file.

The linkage editor
The linkage editor is a processing program that accepts object modules, load modules, control
statements, and options as input. It combines these modules, according to the requirements defined
by the control statements and options, into a single output load module that can be stored in a partitioned
data set program library and loaded into storage for execution by the program management loader. The
linkage editor also provides other processing and service facilities, including creating overlay programs,
aiding program modification, and building and editing system libraries. It supports addressing and
residence mode attributes in both 24- and 31-bit addressing ranges. It does not support program objects
or the (GOFF) object format.

All of the services of the linkage editor can be performed by the binder.

The batch loader
The batch loader combines the basic editing and loading services (that can also be provided by the
linkage editor and program fetch) into one job step. The batch loader accepts object modules and load
modules, and loads them into virtual storage for execution. Unlike the binder and linkage editor, the
batch loader does not produce load modules that can be stored in program libraries. The batch loader
prepares the executable program in storage and passes control to it directly. The batch loader cannot
accept program objects, GOFF object modules, or control statements as input.

The batch loader provides high performance link-loading of programs that require only basic linking and
loading, and can be used if the program only requires listing control or other processing options. Because
of its limited options and ability to process a job in one job step, the batch loader only requires about half
the combined linking and loading time of the linkage editor and program fetch.

Batch loader processing is performed in a load step, which is equivalent to the link-edit and go steps of
the binder or linkage editor. The batch loader can be used for both compile-load and load jobs. It can
include modules from a call library (SYSLIB), the link pack area (LPA), or both. The batch loader resolves
external references between program modules and deletes duplicate copies of program modules. It also
relocates all address constants so that control can be passed directly to the assigned entry point in virtual
storage.

Like the other program management components, the batch loader supports addressing and residence
mode attributes in 24-bit and 31-bit bit addressing ranges. The batch loader program is reenterable and
therefore can reside in the resident link pack area.

Except for the processing of in-storage object modules, all of the services of the batch loader can be
performed by the binder.

Using utilities for Program Management
z/OS provides utility programs to help you manipulate data and data sets. The IEBCOPY, IEHPROGM,
and IEHLIST utilities can be used to support program management tasks as described in this section.
Information on using these utilities is found in z/OS DFSMSdfp Utilities.

z/OS UNIX System Services commands cp and mv and TSO commands OGET and OPUT can be used to
convert between program modules in a PDS or PDSE and program objects in a z/OS UNIX file system. See
z/OS UNIX System Services Command Reference for more information.

IEBCOPY
You can use the IEBCOPY utility program to copy a program module from one program library to another.
IEBCOPY can also perform conversions between load modules and program objects. IEBCOPY can be

Introduction

Chapter 1. Introduction 5

used to copy a program module from a partitioned data set program library to a PDSE program library.
IEBCOPY converts the new copy into the format appropriate for the target program library. However, you
cannot convert a program object into a load module and store it in a partitioned data set library if the
program object exceeds the limitations of load modules (for example, if its length is greater than 16 MB).

The control statement, COPYGRP, allows you to copy a program library member (load module or program
object) and all of its aliases, specifying only a single name. Since member and alias names are still limited
to eight bytes in IEBCOPY control statements, COPYGRP is required for copying members with long alias
names.

You can also use the IEBCOPY utility to alter relocation dictionary (RLD) counts of load modules in place,
and to reblock load modules. You do not need to alter RLD counts for program objects, or use the
COPYMOD control statement to change the block size of a program object library. The COPYMOD control
statement reblocks load modules to a block size best suited for the target device, reducing the time it
takes to load a program into virtual storage.

IEHPROGM
You can use the IEHPROGM utility or TSO commands to delete or rename load modules, program objects,
or their aliases. If the primary name of a PDSE member is deleted or replaced, the associated aliases are
deleted automatically. If the primary name of a PDS member is deleted or replaced, the aliases are not
deleted automatically and continue to point to the original member. Aliases for a deleted load module
remain unless you specifically delete or replace them.

IEHLIST
You can use the IEHLIST utility or TSO commands to list entries in the directory of one or more partitioned
data sets or PDSE program libraries. IEHLIST can list up to ten partitioned data sets or PDSE directories at
a time in an edited or unedited format.

Using service aids for Program Management
Service aids are programs designed to help you diagnose and repair failures in system or application
programs. The AMBLIST and AMASPZAP service aids can be used to perform some program management
tasks. Both AMBLIST and AMASPZAP support program objects, long names up to 1024 bytes, and
multiple text classes. For details on using these programs, see z/OS MVS Diagnosis: Tools and Service
Aids.

z/OS MVS Diagnosis: Reference contains additional diagnostic information.

AMBLIST
The AMBLIST service aid prints formatted listings of modules to aid in problem diagnosis.

AMBLIST can be used to provide listings showing:

1. The attributes of program modules
2. The contents of the various classes of data contained in a program module, including SYM records, IDR

records, external symbols (ESD entries), text, relocation entries (RLD entries), and ADATA
3. A module map or cross reference for a program module
4. The aliases of a program module, including the attributes of the aliases.

Listings of the modified link pack area (MLPA), fixed link pack area (FLPA), pageable link pack area (PLPA),
and their extended areas in virtual storage can be printed together or separately.

AMASPZAP
The AMASPZAP service aid, also called SPZAP or Superzap, dynamically updates or dumps programs
and data sets. You can use AMASPZAP to inspect and modify instructions or data in any load module or
program object in a program library, to dump a load module or program object in a program library, or

Introduction

6 z/OS: z/OS MVS Program Management: User's Guide and Reference

to update the system status index in the directory entry for any load module or program object. Load
modules can be updated in place; when a program object is updated using AMASPZAP, a new copy of the
program object is created.

Program objects: Features and processing characteristics
Program objects remove many of the limitations and restrictions inherent in the old load module format.
Following are some of the key features of program objects, as well as considerations for their use.

Program object structure
Program objects have the following structural features:

• Program object design allows for the removal or increase of most size restrictions, including maximum
text size (now 1 gigabyte) and number of control sections (now unlimited).

• Because program objects never have to reside in a PDS, they can take advantage of PDSE library
technology and its many advantages."

• The program object structure is generalized and extendable. It will continue to change as required to
support new functions.

• Program objects support long names (up to 32767 bytes).
• Program objects contain many of the same enhancements supported in the Generalized Object File

Format (GOFF), which is now being generated by the High Level Assembler and a number of high level
languages (as well as the Binder itself). This includes support for C/C++ writeable static.

• Program objects contain multiple classes of text, distinguished by attributes that control binding and
loading characteristics and behavior. Classes are central to C and DLL support.

– There are two types of classes: text (byte-stream) and nontext (record-like, IDR, ADATA)
– The separate attributes assigned to each class include:

- LOAD: the class is brought into memory at the time the module is loaded
- DEFERRED LOAD: The class is prepared for loading, but not instantiated until requested. (Deferred

classes are most frequently used by LE for loading multiple dynamically modifiable copies of data.)
- NOLOAD: The class is not loaded with the program, for example, it is nontext.
- RMODE 24/ANY/64: Indicates placement of segments within virtual storage.

– A section is the smallest unit that can be manipulated by users (replaced, deleted, ordered). The
contribution to a class from a section is called an element; a section may contribute elements to more
than one class. Elements (other than parts) may contain entry points.

– Classes are bound into independently loadable segments. A segment contains classes with
compatible attributes. A program object can have multiple segments.

– The loading characteristics of the class (and segment) determine the placement of the segment in
virtual storage. Multisegment program objects can be loaded into noncontiguous areas of virtual
storage, for example, when bound with the RMODE(SPLIT) option.

– Program objects contain a class of data specifically intended for users to save associated or
application data (ADATA). It is not loadable (NOLOAD). This data can be source statements,
debugging tables, user information, history data, and documentation. It is accessible via the binder
Application Programming Interface defined in z/OS MVS Program Management: Advanced Facilities.

Program objects on DASD storage
• Unlike the load module, whose format is documented and universally available, the format of the

program object is NOT externalized. The binder API should be used to access program data.
• Consistent with all data in PDSEs, program objects are organized in 4KB blocks, making them accessible

by both the binder and loader via DIV (Data in Virtual) access mechanisms. The minimum length of a
program object is 4KB.

Introduction

Chapter 1. Introduction 7

• When saving a program object in PM1 format, all uninitialized text in a program object (for example,
DS space in a program) is written to DASD as binary zeros. DS space is not written to DASD for later
program object formats.

• Program objects cannot be in scatter-load format.
• IEBCOPY load/unload functions will process program objects with NO change to the format, that is, it

remains the same as it is on DASD.

Residence for and access to program objects
The following describes the program object access modifications and restrictions:

• The program object can be accessed for input using the SAM access method, though this is not
recommended. While 4KB blocks will be presented to the user, no description of these blocks will
be available. (This access is provided primarily for browse and compare services, where there is no need
to interrogate or understand the format of the data.)

• No user can access a PDSE program library directly for output. This function is reserved exclusively for
the binder. Services that perform output functions, for example, AMASPZAP, must invoke the binder.
Applications can use the binder API to put data into a program object.

• Program objects must reside in either PDSEs or z/OS UNIX files. Data members and program objects
may NOT reside in the same PDSE. The PDSE type is determined by the data type on issuance of the
first STOW into an empty PDSE.

• There are no “dangling aliases” for program objects in PDSEs. When the primary member name is
deleted or replaced, the old aliases are deleted automatically.

• The DCB RECFM field for PDSE program libraries must be specified the same as it is now for PDS
program libraries, for example, RECFM=U (undefined record format). While this has no meaning in terms
of the actual program object record format, traditionally it has helped to identify program libraries.
To promote transparency and usability, this record format will continue to be required as one of the
program library indicators for PDSEs as well as PDS's.

Extensions to the PM loader to support program objects
Most of the loading functions are transparent to the user. The loader will know whether the program being
loaded is a load module or a program object by the source data set type. If the program is being loaded
from a PDS, it calls IEWFETCH (now integrated as part of the loader) to do what it has always done. If
the program is being loaded from a PDSE, a new routine is called to bring in the program using DIV. The
loading is done using special loading techniques that can be influenced by externalized options.

Page mode loading
Program objects can be loaded in Page Mode.

• This mode is the default, unless any of the conditions described below under Move Mode exist. Program
objects are mapped into virtual storage. If the program object is less than 96K the whole program is
preloaded. When over 96K the first 16 pages are preloaded; additional pages are brought in during
execution as they are referenced.

• Program objects can be cached in the PDSE hiperspace cache, so frequently referenced pages will be
found in cache.

• When the entire module is read in and relocated before execution begins, it is referred to as Immediate
Mode, a subset of Page Mode.

An option, FETCHOPT=PRIME, allows you to specify explicitly that the module should be completely
relocated before execution. This option only affects Page Mode and forces Immediate Mode. It has the
benefit that the loader can immediately release all storage resources that would otherwise be used to
contain loader control information (and would usually be held until the module is deleted). It has the
disadvantage of bringing in the entire module when it might not be necessary.

Note: Page mode loading is not supported for program objects loaded from z/OS UNIX files.

Introduction

8 z/OS: z/OS MVS Program Management: User's Guide and Reference

Move mode loading
Program objects can also be loaded in Move Mode from either a PDSE or z/OS UNIX file. This mode is
used in those cases where page alignment of virtual storage can not be guaranteed. The entire program is
always loaded and relocated before execution. The loader uses Move Mode when:

• A directed load has been requested (for example, the virtual storage address was passed on the LOAD
SVC).

• FETCHOPT=PACK was specified at Bind time, forcing Move Mode by requesting that program objects be
packed together in virtual storage rather than each be aligned on a page boundary.

• The program object is in overlay format.
• The job step is running V=R.

LLA and checkpoint/restart support for program objects
• LLA (Library Lookaside) supports both the caching of PDSE program directories and the caching of

program objects (loaded from PDSEs), using the same caching algorithms as for load modules. The
interfaces to enable LLA are the same as they are today for load modules.

• Programs can be Checkpointed and Restarted with program objects in the address space if the PDSE
is not open under the user's TCB, (for example, it is OK if PDSEs are JOBLIB, STEPLIB or Linklist). In
addition, there must be no overlay program objects in the address space when a Checkpoint is issued.

Introduction

Chapter 1. Introduction 9

Introduction

10 z/OS: z/OS MVS Program Management: User's Guide and Reference

Chapter 2. Creating programs from source modules

Program management components process the output of language translators and compilers to produce
an executable program unit.

A program can be divided into logical units that perform specific functions. Each of these logical units
of code is a module. Each module can be written in the symbolic language that best suits its particular
function, for example, assembler, C, C++, COBOL, Fortran, or PL/I. Many modules can be bound or
link-edited into a single executable program unit. Object modules produced by several different language
translators can be merged to form a single program.

Note: This topic refers to binder processing and output. These concepts apply equally to linkage editor
and batch loader processing unless otherwise noted in Appendix A, “Using the linkage editor and batch
loader,” on page 157. The linkage editor and batch loader cannot process program objects, extended
object modules, or GOFF object modules.

Combining modules
Each module of symbolic language code is first assembled or compiled by one of the language translators.
The input to a language translator is a source module. The output from a language translator is an object
module. Object modules are relocatable modules of machine code that are not executable, and have one
of several formats:

• Traditional object modules (OBJ) produced by most IBM language products and accepted by the binder,
linkage editor, and batch loader.

• Extended object modules (XOBJ), for instance those processed by COBOL and C/C++ compilers, are
accepted by the Language Environment prelinker. The binder also accepts XOBJ object files, eliminating
the need for the Language Environment prelinker.

• Generalized Object File Format (GOFF) object modules, for example those created by the High Level
Assembler and the IBM C/C++ compilers, are accepted only by the binder. GOFF supports long external
names up to 32767 bytes, multiple text classes, and embedded ADATA.

Before an object module can be executed, it must be processed by a program management component
into executable machine code. The batch loader and the binder can produce executable code directly
in virtual storage that executes and is then discarded. The binder and the linkage editor can produce
executable code that can be stored in a program library. The binder can produce:

• A program object stored in a partitioned data set extended (PDSE) program library
• A program object stored in a z/OS UNIX System Services (z/OS UNIX) file
• A load module stored in a partitioned data set (PDS) program library.

The linkage editor can only produce load modules stored in a PDS.

You can also use the IEBCOPY utility to convert load modules in a PDS into program objects in a PDSE, or
program objects in a PDSE into load modules in a PDS. See “Using utilities for Program Management” on
page 5.

Unix System Services commands cp and mv and TSO commands OGET and OPUT can be used to convert
between program modules in a PDS or PDSE and program objects in a z/OS UNIX file system. See z/OS
UNIX System Services Command Reference for more information.

Program objects and load modules are units of executable machine code in a format that can be loaded
into virtual storage and relocated by the program management loader. Collectively, program objects
and load modules are referred to as program modules. The PDSE and PDS data sets they reside in
respectively, are referred to as program libraries.

Creating programs from source modules

© Copyright IBM Corp. 1991, 2021 11

Figure 2 on page 12 shows the steps required to create an executable program from source modules.
The binder API allows you to control specific binding operations. See z/OS MVS Program Management:
Advanced Facilities for more information about the binder API.

Figure 2. Preparing source modules for execution and executing the program

Symbols
Table 1 on page 12 summarizes the types of binder symbols you can define, their length, and applicable
usage notes.

Table 1. Rules for binder symbols

Symbol type
Maximum
Length (in bytes) Additional information

External symbol in PDS 8 Prelinker can be used to create truncated names

External symbol in PO1 64 Longer names cause automatic promotion to a higher
level unless restricted by the COMPAT option

External symbol in PO2
and PO3

1024 Longer names cause automatic promotion to PO4 unless
restricted by the COMPAT option

External symbol in PO4+ 32767

Section name Same as the other external symbols defined above

Class name 16 User-defined names should not exceed 14 bytes, and
must not begin with B_ or C_

Member name 8 Should be upper case alphanumeric. Does not apply to
UNIX files Binder allows 1024 for PDSE but will generate
an 8 byte member name for system use if user-defined
name exceeds 8 characters.

UNIX program name 255 Primary or alternate names. Includes file extension, if
any, but not path

Alias name in PDS 8 Should be upper case alphanumeric.

Alias name in PDSE 1024 64 in PO1

DDname 8 Upper case alphanumeric.

Creating programs from source modules

12 z/OS: z/OS MVS Program Management: User's Guide and Reference

Table 1. Rules for binder symbols (continued)

Symbol type
Maximum
Length (in bytes) Additional information

Data set name 44 Upper case alphanumeric plus periods.

Path name 1023 Must begin with / (for absolute path) or ./ (for relative
path)

Note:

1. Names must be composed of charactars with EBCDIC representations from X'41' through X'FE' except
that Shift-in and Shift-out (X'0E' and X'0F') may be used to signal DBCS character ranges. This
character set restriction means that blanks may not be used within names, but any punctuation or
national use characters may be except for those noted above as being alphanumeric.

2. The binder treats upper and lower case letters as distinct with three exceptions:

a. Keywords in binder options, and binder commands, are converted to upper case.
b. If the CASE=MIXED option is not specified, lower case letters in control statement operand values

and option values are converted to upper case unless they are within single quotation marks.
Since options are processed in order of appearance, option data appearing prior to a CASE=MIXED
specification will be folded to uppercase.

c. If the UPCASE option is specified, certain symbols left unresolved at the end of a bind are converted
to uppercase for a final resolution attempt.

Sections
Every module is composed of one or more sections. A section is a named collection of program object
components, called elements, that you can manipulate (for example, order or delete) by that section
name during binding. Such manipulation does not affect the integrity of the containing module. The
section is a generalization of the traditional object module control section (CSECT) concept.

Sections consist of one or more elements, each representing a separate class of data. An element does
not have a name and cannot be specified on binder control statements. All elements of a section are
edited as a unit. If a section is replaced, ordered or aligned, all of its elements are replaced, ordered or
aligned. The element represents the cross section of module data identified by a section name and class
name.

Classes
Every module is composed of multiple classes, each with its own function and format. Some classes
represent program text, the instructions and data that are loaded into virtual storage during execution.
Other classes, such as an external symbol dictionary (ESD) and a relocation dictionary (RLD), are required
for binding and loading the program. Additional classes, such as IDR and ADATA, provide descriptive
information about the program module or its individual sections and are of use primarily for maintenance
and debugging.

Like sections, classes consist of elements. An element is defined by a class name and a section name.
Figure 3 on page 14 illustrates a section/class/element structure.

Creating programs from source modules

Chapter 2. Creating programs from source modules 13

Figure 3. Section/class/element/structure

See “Object and program module structure” on page 16 for the logical structure of elements appearing
as one or more classes in a module.

Each element in the class represents the contribution of a single section to that class. The sequence of
elements within the class is the same as the sequence of the sections within the module, specified on
either the ORDER control statement or the ORDERS API function.

Classes are identified by class name. Unlike section names, which are assigned by the source language
programmer, class names are normally assigned by an IBM compiler or binder. Class names are a
maximum of 16 bytes in length. Binder-defined class names begin with “B_”. Compiler-defined class
names begin with “C_”. User-defined class names should not use these prefixes and should be no more
than 14 characters long. Class names are not normally required on binder control statements, but can
appear in listings and diagnostics. Each separately named class has a specified or an implied set of
binding and loading attributes.

Note: The class concept is new with the binder, although several fixed classes (ESD, RLD, TEXT, IDR and
SYM) were implicit in the old binding products.

Common areas
A common area is a data-only section that can be shared by multiple sections within the module.
Common areas can have a name, and if unnamed a name consisting of a single blank will be assumed.
The only supported text class for common areas is B_TEXT. If no identically-named CSECT is present, the
storage allocated to the COMMON is determined by the longest COMMON definition.

Common areas provide shared space in the module text for data, not instructions. Common areas cannot
have initial data values; however, if both a section (CSECT) and common area of the same name are
present in the module, the CSECT will initialize the COMMON area. Note that such a CSECT must be at
least as long as the longest COMMON definition.

Common areas are normally located at the end (highest virtual address) of the module, but can be
relocated by specifying the common area name in the ORDER control statement. When creating a module
in overlay format, if a common area is referenced by sections in different paths then it will be moved to a
segment higher in the structure (closer to the root segment) that is common to both paths.

Parts
Certain text classes can be further subdivided into parts. Like common areas, named parts can be
shared between sections and are defined with the longest length and most restrictive alignment of
all contributing sections. Unlike common areas, they must be defined in classes other than B_TEXT.
Initializing data in parts is supported for PO3 and later format program objects.

Parts and common areas cannot share the same storage. While both sharing methods can coexist in the
same program module, a single shared data area must use one or the other. Older compilers will continue
to use common areas for data sharing, whereas newer compilers will utilize parts.

Note: Parts are not supported by either the linkage editor or batch loader programs.

Creating programs from source modules

14 z/OS: z/OS MVS Program Management: User's Guide and Reference

Pseudoregisters
External Dummy Sections, also called pseudoregisters, are varying sized units of program storage that
do not occupy space in the load module or program object. External Dummy Sections are defined by
compilers, or by the assembler using the DXD instruction, and are shared among all sections in the
module in the same way that common areas are shared. The attributes of the single, mapped area
represents the cumulative length obtained by assigning each pseudoregister's longest length and most
restrictive alignment from all its definitions. Virtual storage for the pseudoregister(s) is not provided
in the program module, but is instead obtained during execution, using the aggregate length of all
pseudoregisters provided by the linker. The concatenation of all uniquely named pseudoregisters is called
the pseudoregister vector.

All of the linking products (linkage editor, batch loader, and binder) support pseudoregisters, although
the implementations are different. The linkage editor and batch loader process pseudoregisters separate
from the other program elements and identify them differently in messages and listings. The binder treats
pseudoregisters as parts in a “noload” class, B_PRV, and displays the PRV as it would any other class. As a
result, there is no separate “Pseudoregister” section in the binder map.

Note: PRV contents are displayed as text class B_PRV. Even though B_PRV is listed as a text class, no text
is ever placed in B_PRV by the binder.

Entry points
An entry point in a program module is a location that is known by name to the operating system and which
can be referenced by or receive control from another module. In PDS and PDSE libraries entry points are
represented by directory entries; entry points in z/OS UNIX files are each represented by a file name in
the z/OS UNIX directory structure.

There are five types of entry points in program modules:

• Primary entry point. This is the point that receives control when the module is invoked by its primary,
or member, name. The primary name is the name that was specified on the NAME control statement or
the SYSLMOD dd-statement when the module was created.

• Alternate entry point. Alternate entry points are locations, other than the primary entry, which can
receive control or be referenced from another module. An alternate entry point is defined during binding
by use of an ALIAS control statement (or ADDAlias API function) that specifies the name of an external
label in the program.

• True alias. A true alias is another name associated with the primary entry point. It is also defined with
an ALIAS control statement, but is not an external label in the module.

• Alternate primary. MVS places certain restrictions on the lengths of member names and aliases. If you
specify a name on the NAME control statement that exceeds the 8-byte limitation for member names,
the binder will generate an 8-byte primary name and store the specified name as a true alias. This
alias is referred to as the alternate primary and flagged in the directory entry. The primary entry is also
referred to as the generated primary.

The linkage editor does not support alternate primaries or any entry point name longer than eight bytes.

The way entry points are represented in the system depends on the type of file in which the module is
stored:

• PDSE program libraries support all of the entry point types listed above as directory entries. The primary
or generated primary name becomes the member name and is limited to eight bytes. Alternate entry
points, true aliases and the alternate primary are stored as aliases and are limited in length to 1024
bytes.

• Partitioned data set (PDS) program libraries support primary entry point, alternate entry point and true
alias names up to a maximum of eight bytes. The primary entry point appears as the primary directory
entry; aliases and alternate entry points appear as alias directory entries. Alternate primaries are not
supported in a PDS.

• z/OS UNIX-resident program objects can contain primary names and true aliases only. All names are
limited to 255 bytes, not including the path name. Alternate entry points and alternate primary entry

Creating programs from source modules

Chapter 2. Creating programs from source modules 15

points are not supported. As far as UNIX System Services is concerned, there is no difference between
primary names and alias names.

External symbols
Sections can contain symbolic references to locations defined in the same or other sections. These
references are called external references. External references are normally made by using an address
constant (adcon). For program objects, the binder supports adcons that are three, four, and eight bytes
in length. A symbol referred to by an external reference must be an external name, the name of an entry
point, or the name of a pseudoregister. In modules containing only a single text class, the section (CSECT
or common area) name is an implied entry point.

By matching an external reference with an external definition (sometimes called an ‘external label’), the
binder resolves references between sections. External references and external labels are called external
symbols. External symbols are defined in one section and can be referred to in the same section, or from
other sections.

Note the following for using relative immediate references:

• Two-byte relative immediate references are supported within a segment, but are not supported across
separate segments.

• Four-byte relative immediate references are supported except if either segment is RMODE 64.

Figure 4 on page 16 shows how external symbols provide connections between modules.

Figure 4. External names and external references

Object and program module structure
Object modules, load modules, and program objects share the same logical structure consisting of:

Creating programs from source modules

16 z/OS: z/OS MVS Program Management: User's Guide and Reference

• Control dictionaries, containing information to resolve symbolic cross-references between sections
and to relocate address constants. When a language translator converts source modules into object
modules, it generates a control dictionary entry whenever it processes an external symbol, address
constant, or section. Most language translators produce two kinds of control dictionaries: an external
symbol dictionary (ESD) and a relocation dictionary (RLD).

• Text, containing the instructions and data of the program.
• Identification (IDR) data, containing program control and user-provided information about the modules.
• Associated data (ADATA) for various uses.

Each of these structural elements appears as one or more classes in the module.

A description of the external symbol and relocation dictionaries follows.

External symbol dictionary
The external symbol dictionary (ESD) contains one entry for each external symbol defined or referred
to within a module. The dictionary contains an entry for each external reference, entry name, named
or unnamed control section, class, blank or named common area, and part or pseudoregister (external
dummy section). An entry name or named control section can be referred to by any control section or
separately processed module. An unnamed control section cannot be referred to in this way.

Each entry identifies a symbol or a symbolic reference and gives its location within the module. Each entry
in the ESD is classified as one of the following:

External reference
Symbol referenced in the module being processed that is defined as an external name in another
separately processed module. The ESD entry specifies the symbol; the location is unknown.

Weak external reference*
External reference that is not resolved by automatic library calls unless an ordinary external reference
to the same symbol is found. The ESD entry specifies the symbol; the location is unknown.

External label definition
Name that defines an entry point within a section. For load modules and traditional (OBJ and XOBJ)
object modules, an entry point defines an offset within a control section. For program objects and
GOFF modules, an entry point defines an offset within an element (and each element is owned by
a section). A control section or element may have multiple entry points. The ESD entry specifies the
symbol, its location, the addressing mode, and identifies the section or element containing the entry
point.

Section definition
In load modules and CSECTs, the symbolic name of a control section. The ESD entry specifies the
symbol, the length of the control section, and its location as an offset within the module or program
object segment in which the section appears. The location represents the origin, or the first byte, of
the control section. This ESD entry also specifies the CSECT addressing mode and residence mode.

In Program Objects, a section is the symbolic name of a collection of elements assigned to one or
more classes.

Private code*
Unnamed section. The ESD entry specifies the section length, origin, and can also specify the
addressing mode and residence mode of the CSECT. The name field contains blanks.

Blank or named common area*
A section used to reserve a virtual storage area that can be referenced by other modules. The ESD
entry specifies the name and length of the area. If there is no name, the name field contains blanks.

Part reference
A reference to a named subdivision of module text that can be shared between referencing sections.
Parts might or might not occupy space in the loaded module.

Pseudoregister*
A facility (corresponding to the external dummy section feature of High Level Assembler) that can be
used to write reenterable programs. A pseudoregister is part of a dynamically acquired storage area

Creating programs from source modules

Chapter 2. Creating programs from source modules 17

called a pseudoregister vector. The pseudoregister can be of any size or data type. The space for such
areas is not reserved in the program module but is acquired during execution. The ESD entry contains
the name, length, alignment, and displacement of the pseudoregister.

Element definition
Symbolic name of a class. The ESD entry specifies the attributes of the class. Element definition is
supported by GOFF and program objects only.

Note:

The binder requires fewer ESD record types than the linkage editor. Symbol types followed by an asterisk
represent variations of the preceding type as they appear in binder listings, GOFF modules, and program
objects.

Relocation dictionary
The relocation dictionary (RLD) contains an entry for each address constant that must be modified before
a module is executed or requires adjustment during the binding process. The entry specifies both the
address constant location within a section and the external symbol used to compute the value of the
address constant. (The external symbol can be defined in an ESD entry in another section.)

The binder uses the RLD to adjust (relocate) the address constants for references to other control
sections or elements. The RLD is also used to readjust these address constants after the program
management loader reads a program object or load module from a program library into virtual storage for
execution.

An RLD entry can be one of the following types:

A-con
Non-branch RLD type; in assembler language, DC A(name). The corresponding address constant may
contain an offset. A-con's are normally used for branching within a section or for addressing data.

Class address
This type of RLD is supported for PO2 and later format program objects. See “Program object formats”
on page 23 for additional information.

Class length
The length of the pseudoregister vector is supported in assembler language by the CXD instruction.
In program objects, the length of any class in assembler language uses DC J(classname). For other
text classes this RLD type is supported for PO2 and later format program objects. See “Program object
formats” on page 23 for additional information.

Individual PR length
The length of the individual PR is supported in assembler language by the DXD instruction. In program
object, the length of individual PR in assembler language uses DC J(myDXD), DC J(myDSECT) or DC
J(myPart).

Loader token
An 8-byte constant which uniquely identifies a specific execution instance of the program (PO3 and
later program objects).

Q-con
Q-con type is an offset of the designated symbol from the start of its containing class. In assembler, it
is coded as DC Q(name). Q-cons are not relocated during loading. Q-cons designating offsets in class
B_PRV are supported for all format modules. For other classes, they are supported for PO2 and later
format program objects. See “Program object formats” on page 23 for additional information.

QY-con
QY-con type is an assembler notation that supports long-displacement type instructions in which
the displacement is held in discontiguous bytes (DL-DH). This support is provided in the ZOSV1R10
variant of the PO5 format and later formats. See “Program object formats” on page 23 for additional
information.

Creating programs from source modules

18 z/OS: z/OS MVS Program Management: User's Guide and Reference

R-con
R-con type is the address of the environment or associated data for a symbol. R-con is supported for
program objects in PO3 and later formats. See “Program object formats” on page 23 for additional
information.

RI-con
RI-con type is an instruction address relative halfword or fullword offset for use with relative-
immediate instructions. This support is provided in the ZOSV1R7 variant of the PO4 format and later
formats. See “Program object formats” on page 23 for additional information.

V-con
V-con is a branch type; in assembler language, DC V(name). V-con's are normally used for branching
out of the control section.

Text
Text contains the instructions and the data belonging to the module. The multiclass capability of the
binder allows for more than one text class, each of which is loaded into separate storage areas.

Identification data
Identification (IDR) data contains information about the module. The IDR data is not used during program
loading and execution. A listing of the IDR data for a module can be obtained by executing the AMBLIST
utility.

1. Link-edit or bind identification (IDRB)

IDRB data identifies the component that created the program module. IDRB data is associated with
the entire module never in individual sections.

2. Translator identification data (IDRL)

IDRL data is produced by the language translator and identifies the compiler or assembler that
produced the module or section and the date of compilation.

3. Zap identification data (IDRZ)

IDRZ data is created by AMASPZAP when it is executed against program modules. It contains a
maintenance identifier (such as PTF number) and the date that the maintenance was applied.

4. User identification data (IDRU)

IDRU data is provided by the user on the IDENTIFY control statement for a program module. It
can contain any information pertinent to the associated section. It is created at bind time using the
IDENTIFY control statement. See “IDENTIFY statement” on page 111 for more information.

Module attributes
The module attributes include the module entry point designation, module reusability,and the module
addressing and residence modes. The primary entry point designation is stored in the END record of an
object module. Module attributes for load modules are stored in the directory entry for the partitioned
data set member. Module attributes for program objects are stored in the PDSE directory entry and
embedded within the program object.

Binder batch processing
This section describes the input and output of the binder and how the binder produces a program object
or load module in batch mode.

Input and output
The binder accepts four major types of input:

1. Primary input defined by the SYSLIN DD statement.

Creating programs from source modules

Chapter 2. Creating programs from source modules 19

2. Additional input specified with the INCLUDE control statement
3. Additional input incorporated by the program management binder from a call library. This input can

contain object modules and control statements, load modules, or program objects.
4. Additional input specified as options in the PARM field of the JCL EXEC statement.

Output of the program management binder is of the following types:

1. A program module placed in a program library as a named member, or a program object placed in a
z/OS UNIX file. Program objects are stored in PDSE program libraries or z/OS UNIX files. Load modules
are stored in partitioned data set program libraries.

2. An executable module loaded into virtual storage.
3. Diagnostic and informational output produced as a sequential data set.

Figure 5 on page 20 shows how object modules are combined to create a load module.

Figure 5. Input and output for the binder

Creating a program module
A program module is composed of all input object modules and program modules processed by the
binder or linkage editor. The resultant control dictionaries are collections of all the control dictionaries
in the input modules. For load modules, the control dictionaries are merged into a single composite
external symbol dictionary (CESD) and a single relocation dictionary (RLD). For program objects, the
control dictionaries are retained individually. Figure 6 on page 21 shows how multiple input modules are
combined into a single program module.

The output module also contains the text from each input module. If the output is a load module, it also
contains an end-of-module indicator.

Creating programs from source modules

20 z/OS: z/OS MVS Program Management: User's Guide and Reference

Figure 6. A program object produced by the binder

As the binder processes object and program modules, it assigns relative virtual storage addresses to
control sections and resolves references between control sections.

Creating a load module
You can use the binder to create a load module in a PDS. The binder will produce a load module if
SYSLMOD is allocated to a PDS. The COMPAT setting has no effect on the decision to produce a load
module or a program object. Certain program module contents cannot be saved in a load module and if
you have used such features, either the module will be saved with an error indication or you will receive a
severe error indicating that the module could not be saved at all. Examples of such features are symbols
longer than eight characters or the use of multiple text classes. If you do not use any 64-bit features,
then the load module format is compatible across all releases of z/OS and between the binder and the
linkage editor. The linkage editor can process load modules produced by the binder and and the binder
can process load modules produced by the linkage editor. A load module produced by the binder on z/OS
can be loaded and executed on any release of z/OS. However, this is not true if the load module has any
CSECTs or entry points marked as AMODE(64) or any eight-byte adcons. Such a load module cannot be
executed on a release prior to z/OS 1.3 and cannot be processed by the linkage editor.

Creating a program object
You can use the binder to create a program object in a PDSE program library. PDSE program libraries differ
in format from PDSE data libraries: Data members, including object modules, and program objects cannot
reside in the same library. For the format and content of the PDSE directory entry, see z/OS MVS Program
Management: Advanced Facilities.

You can also use the binder to create a program object in a z/OS UNIX file. The program object will have
the same content as a program object in a PDSE. You can copy a program object from a z/OS UNIX file
to a PDSE without loss of information or function. In most cases the same is true for a copy in the other
direction; see “Creating a program object in a z/OS UNIX file” on page 22.

Program objects stored in a PDSE library (or z/OS UNIX files) can consist of multiple text classes. At
load time, the program management loader will load each text class above or below 16 MB, depending
on attributes associated with that text class. Specifying the RMODE(SPLIT) binder option will cause the
module text in B_TEXT to be separated into up to three classes: B_TEXT24 for loading below the line,
B_TEXT31 for loading above the line, and B_TEXT64 for loading above the bar.

Creating programs from source modules

Chapter 2. Creating programs from source modules 21

When load modules and old (non-GOFF) object modules are used as inputs to create a program object,
the binder converts the old format to the new format by making the following changes:

• Control section names are changed to section names.
• The text of the control section is assigned to class B_TEXT, and an external label entry with the control

section's name is associated with the first byte of the element defined by the section name and class
B_TEXT, as noted above.

• Pseudoregister items are assigned to class B_PRV.

Multipart program objects
Under certain circumstances, the binder will create a program object with multiple segments. When
loading this type of module, each segment has a different load point. The binder currently uses RMODE
and time of load (initial or deferred) of the classes as the criteria for splitting a module into segments. If
all input is from traditional object modules (not XOBJ or GOFF) or load modules, a multipart module is
created only if RMODE(SPLIT) is specified. If using the assembler CATTR support to create user-defined
text classes (supported only in GOFF object format), or if GOFF or XOBJ object modules from a compiler
are part of the input, there can be text classes other than B_TEXT. The RMODE of these additional initial
load text classes is used to assign each of these classes to no more than 2 segments. In addition,
deferred load classes, such as C_WSA, are each placed in a separate segment. There is no binder external
to override this division into segments. Certain restrictions apply to multipart modules.

If you use the capabilities of the High Level Assembler or the binder RMODE(SPLIT) option to create
multipart program objects, certain restrictions apply.

• If the module is the target of a directed load (where the issuer of the LOAD is providing the storage in
which to load the module), the two class segments are concatenated and loaded into storage as a single
unit.

• All entry points (primary and alternate) must be defined in the same class.
• If parts of the program will reside above 16 MB, then you must ensure that the entire module can

execute with AMODE(31) or that linkage between sections on opposite sides of the 16 MB line use
BASSM or equivalent instructions to force an AMODE switch when necessary.

• A binder option, HOBSET, will cause the high order bit on V-type address constants to be set according
to the addressing mode of the target.

• Overlay format is incompatible with multipart program objects.

If a multipart program object is subsequently loaded through a directed load or by the binder, all text
classes are loaded into consecutive storage locations according to the minimum RMODE value for all
loaded classes.

Creating a program object in a z/OS UNIX file
To place a program object in a z/OS UNIX file, specify the PATH parameter on the SYSLMOD DD statement
in a batch bind job. You can also use the binder application programming interface or the z/OS UNIX c89
or ld command. You can use the following TSO commands to copy a program object between a PDSE to
and a z/OS UNIX file:

• OGET
• OGETX
• OPUT
• OPUTX

The following z/OS UNIX System Services commands will also allow you to copy and move executables
between a PDSE and z/OS UNIX files:

• cp
• mv

Additional information on this topic can be found in the following documents:

Creating programs from source modules

22 z/OS: z/OS MVS Program Management: User's Guide and Reference

• For the binder API, see: z/OS MVS Program Management: Advanced Facilities
• For TSO commands and z/OS UNIX System Services commands, see: z/OS UNIX System Services

Command Reference

When specifying PATH in a batch bind job, you can provide either the complete path name or a directory.
If the PATH parameter designates a directory, you must provide the file name on a NAME statement. The
name on the NAME statement must be no longer than 255 bytes.

You can also specify the PATHOPTS and PATHMODE parameters in the JCL. If you do not, and the JCL
designates a directory, the binder assigns attributes for the created file that allow only the file owner to
have read, write, and execute authority.

If you specify the PATH parameter for SYSLMOD, the save operation is always processed as though you
had specified REPLACE. Also, if you attempt to save a program object to a z/OS UNIX file and do not
provide a name through the NAME control statement, the binder does not create a temporary name as
it does when you save to a partitioned data set or PDSE under the same circumstance. Refer to the
NAME statement in Chapter 7, “Binder control statement reference,” on page 101 for a description of said
condition.

You can provide an ALIAS control statement to designate the pathname to be used for an alias. The binder
appends the path information on the SYSLMOD DD statement to each operand on the ALIAS control
statement in order to form each complete alias pathname.

Restrictions
1. You can execute a program object that resides in a z/OS UNIX file either by using z/OS UNIX

commands or through the BPXBATCH facility. You cannot execute such a program object from an
MVS batch job using EXEC PGM=.

2. z/OS UNIX does not support alternate entry points. All aliases in z/OS UNIX program objects are
processed as though they were true aliases.

3. Overlay format modules are not supported in z/OS UNIX files.

Program object formats
The program object formats can be specified by the COMPAT option. The main purpose of the COMPAT
option is to notify the binder to generate a program object (PO) at a particular program-management (PM)
level.

When a COMPAT level is specified in terms of the z/OS system release, it corresponds to a specific
program-management level and program management sub-level (such as PM4SUB3). For best results,
specify the z/OS system. This can also be done to request a specific program management sub-level.
For example, while COMPAT=PM4 can be used instead of COMPAT=ZOSV1R3, using COMPAT=PM4SUB3
results in an error; COMPAT=ZOSV1R7 must be used instead. The following table shows the
corresponding z/OS system releases and program management levels.

Table 2. z/OS system releases, their corresponding program management levels, and features added

z/OS system release Program management level and
sub-level

Summary of features added

ZOSV2R5, ZOSV2R4, ZOSV2R3,
ZOSV2R2, ZOSV2R1

PM5SUB4 COMPAT=ZOSV2R1 is the
minimum level that supports
preserving all boundary
alignments specifications coming
from ESD records. ALIGNT can
be used to specify boundary
alignments for both load
modules and program objects
without requiring the use of
COMPAT(ZOSV2R1).

Creating programs from source modules

Chapter 2. Creating programs from source modules 23

Table 2. z/OS system releases, their corresponding program management levels, and features added
(continued)

z/OS system release Program management level and
sub-level

Summary of features added

ZOSV1R13 PM5SUB3 COMPAT=ZOSV1R13 is the
minimum level that supports
conditional sequential RLDs.

ZOSV1R12, ZOSV1R11,
ZOSV1R10

PM5SUB2 COMPAT=ZOSV1R10 is the
minimum level that supports
saving the timestamp from
compiler IDRL records in
program objects. It also supports
the RLD type corresponding to
the assembler QY-con. The QY-
con is a special form of QCON
representing the displacement in
RXY type instructions.

ZOSV1R9, ZOSV1R8 PM5 COMPAT=PM5 is the minimum
level that supports cross-
segment references in relative
immediate instructions in
program objects.

CAUTION: Programs
bound with this
option cannot be
loaded, inspected, or
reprocessed on any
version prior to z/OS® 1.8.

ZOSV1R7 PM4SUB3 COMPAT=ZOSV1R7 is the
minimum level that supports
relative/immediate instructions
across compile units or
compression of non-program
data.

ZOSV1R6, ZOSV1R5 PM4SUB2 COMPAT=ZOSV1R5 is the
minimum level that can be
specified if RMODE 64 has been
specified by a compiler for
deferred load data segments.

Creating programs from source modules

24 z/OS: z/OS MVS Program Management: User's Guide and Reference

Table 2. z/OS system releases, their corresponding program management levels, and features added
(continued)

z/OS system release Program management level and
sub-level

Summary of features added

ZOSV1R4, z/OSV1R3 PM4 COMPAT=PM4 is the minimum
level that can be specified if
any of the following features are
used:

• Input modules contain 8-byte
adcons

• Any ESD record is AMODE 64
• Input contains symbol names

longer than 1024, unless
EDIT=NO

• A value of 64 is specified on
the AMODE option or control
statement

If COMPAT=PM4 and OVLY are
both specified, COMPAT=PM4 is
changed to PM1. PM4 supports
all PM3, PM2 and PM1 featurzes.

ZOSV1R2, ZOSV1R1, OSV2R10,
OSV2R9, OSV2R8

PM3 COMPAT=PM3 is the minimum
level that can be specified if
any of the following features are
used:

• Binding modules compiled
using the XPLINK attribute

• DYNAM=DLL
• XOBJ format input to the

binder without going through
the Language Environment®

prelinker, or rebinding modules
containing input from such
sources

• Hidden aliases (from ALIASES
control statement)

• Support for both deferred load
classes and merge classes with
initial text (from GOFF format
input modules or data buffers
passed by way of the binder
API.)

• Language Environment-
enabled programs

If COMPAT=PM3 and OVLY are
both specified, COMPAT=PM3 is
changed to PM1. PM3 supports
all PM2 and PM1 features.

Creating programs from source modules

Chapter 2. Creating programs from source modules 25

Table 2. z/OS system releases, their corresponding program management levels, and features added
(continued)

z/OS system release Program management level and
sub-level

Summary of features added

Not applicable PM2 COMPAT=PM2 is the minimum
level that can be specified if any
of the following are used:

• User-defined classes passed
in GOFF format input as well
as certain other information
supported only in GOFF format

• Names (from input modules or
created by control statements
which cause renaming) that are
longer than 8 bytes.

• Use of RMODE=SPLIT

If OVLY is specified,
COMPAT=PM2 is changed to
PM1. PM2 supports all PM1
features.

Not applicable PM1 This is the minimum level which
supports binder program objects.
In addition to old linkage editor
load module features, program
object features supported here
include the following:

• Device-independent record
format

• Text length greater than 16
megabytes

• More than 32,767 external
names

OVLY is supported, and will force
PM1 to be used.

Clarifying sub-levels
In a case where the program management levels are identical and only the program management sub-
levels differ, this indicates that there is new binder functionality; however, none of the program object
information that the loader uses is incompatible (only information that the binder uses for rebinding,
diagnostics, and so forth is different). Therefore, when considering a COMPAT level, use just the program
management level without regard for the sub-level to determine the earliest release on which to use it.

For example, if z/OS V1R7 is targetted with COMPAT=ZOSV1R7, create a PM4SUB3 format program
object. Then, in addition to z/OS V1R7, that program object can be run on releases all the way down
to z/OS V1R3, because that was the first release to introduce program management level PM4 format
(effectively, this is level 4, sub-level 1, or COMPAT level PM4SUB1 format — but the binder does not use
the SUB1 designation).

Be aware of the consequences of the program management sub-level when it indicates that there is new
binder function, because this means that the only thing that can be done is to run the program.

Creating programs from source modules

26 z/OS: z/OS MVS Program Management: User's Guide and Reference

For example, a format program object that is at COMPAT level PM4SUB3, contains information that
only a binder at z/OS V1R7 and above can understand. While the program can run based solely on the
program management level, without regard for the sub-level, it cannot be rebound with a binder (the
IEWL program, the TSO LINK command, or the UNIX ld utility) at a lower release program management
level and sub-level. No other programs running on a lower release z/OS system than that program can use
the Program Management Binder services against it. The services include the following:

• IEBCOPY
• SMP/E
• SPZAP
• Any programs that use the binder APIs (such as the AMBLIST, IEBCOPY, and UNIX utilities cp, mv, c89,

and nm)
• The fast data APIs
• The binder C/C++ API interfaces introduced in z/OS V1R9.

Any attempt to do so by a properly coded program fails with the following message:

IEW2509S 3602 MODULE *NULL* IDENTIFIED BY DDNAME /0000001 IS AN UNSUPPORTED VERSION
AND CANNOT BE PROCESSED.

Each program object format that is introduced will support for features that were not previously available
and, except for overlay structure, each format will support all features provided by earlier formats. By
default, the binder will choose the earliest format supporting all of the features being used. See “COMPAT:
Binder level option” on page 78 for more information.

Note: As was indicated earlier, the binder also continues to support the old load module format. Note
the difference in terminology. A load module is stored in a standard partitioned data set in a format
compatible with older operating systems. A program object is stored in a PDSE (DSNTYPE=LIBRARY) or a
z/OS UNIX file in one of the formats listed above. The choice between load module and program object for
binder output is based solely on the output destination.

Binding

Assigning addresses
Each object or load module processed by the binder has an origin that was assigned during assembly,
compilation, or a previous execution of the binder or linkage editor. When several modules, each with
an independently assigned origin, are to be processed by the binder, the sequence of the addresses is
unpredictable. Two input modules can even have the same origin.

Each input module can be made up of one or more sections. To produce an executable program object or
load module, the binder assigns relative virtual storage addresses to each section.

The addresses in a program module are consecutive, but are all relative to base zero. When a program
is executed, the loading program prepares the module by loading it at a specific virtual storage location
and then increasing each address in the program by this base address. Each address constant is also
readjusted. This final readjustment is known as relocation.

The preceding discussion describes linker actions in processing load modules. When program objects
are processed, the output may contain more than one relocatable, loadable segment. In each segment,
addresses are relocated during binding relative to a zero base address for each segment; when the
segments are loaded, each address constant is relocated relative the the loading address of the segment
containing the referenced address. Figure 7 on page 28 illustrates how multiple segments are created.

Creating programs from source modules

Chapter 2. Creating programs from source modules 27

Figure 7. Multiple segments

Resolving external references
The binder resolves module references, matching symbol references to symbol definitions by searching
for the external symbol definition in the ESD of each input module. Figure 8 on page 28 shows the binder
matching the external reference to B1 by locating the definition for B1 in the ESD of Module B. In the
same way, it matches the external reference to A11 by locating the definition for A11 in the ESD of Module
A.

Figure 8. Use of the external symbol dictionary

Note: External names, including section names and entry names, should be one to 32767 bytes in length.
No leading or embedded blanks are allowed, nor are the characters outside the range X'41' through X'FE'

Creating programs from source modules

28 z/OS: z/OS MVS Program Management: User's Guide and Reference

inclusive. However, the hexadecimal codes X'0E' and X'0F' are recognized as the shift-in and shift-out
codes respectively for double-byte character set (DBCS) encoding. All other characters are allowed in any
position of the name. Use special characters with caution, because the compilers and assemblers that
produce object modules often have a more limited character set and other operating system components
may not handle them properly.

Creation of an executable program in virtual storage
The IEWBLDGO entry point of the binder prepares an executable program in virtual storage and passes
control to it directly. It combines binding and loading functions into a single step, so it can be used for
compile-load-and-go and load-and-go jobs. IEWBLDGO cannot be used to produce a program module in a
partitioned data set or a PDSE.

IEWBLDGO cannot be used for programs containing deferred load classes (such as C_WSA). Most XOBJ
input to the binder will result in deferred load classes being built.

Addressing and residence modes
A program module has a residence mode assigned to it, and each entry point and alias has an addressing
mode assigned to it. You can specify one or both of these modes when creating a program module or
you can allow the binder to assign default values. For additional information see “AMODE and RMODE
hierarchy” on page 30. The addressing and residence modes must be compatible. The binder, however,
allows you to specify them as independent options and validates the combination when the module is
saved. See “AMODE and RMODE combinations” on page 31 for information on how the binder resolves
addressing and residence modes.

AMODEs and RMODEs can be assigned at assembly or compilation time for inclusion in an object module.
AMODE and RMODE values provided to the binder in the ESD data of an object module are retained in the
ESD data of the program module (except for overlay programs). Overriding the AMODE and RMODE values
in the ESD (see “AMODE and RMODE hierarchy” on page 30) sets the values in the program library
directory entry, but does not affect the ESD data.

A special, invalid combination of AMODE(ANY) RMODE(ANY), when appearing in ESD records, is
processed as AMODE(MIN). This setting is used by some compilers when creating OBJ-format object
modules that do not support AMODE(MIN).

Addressing mode
You assign an addressing mode (AMODE) to indicate which hardware addressing mode is active when the
program executes. Addressing modes are:
24

indicates that 24-bit addressing must be in effect.
31

Indicates that 31-bit addressing must be in effect.
ANY

Indicates that either 24-bit or 31-bit addressing can be in effect.
64

Indicates that 64-bit addressing can be in effect.

Note: AMODE ANY(64) is not supported.

MIN
Requests that the binder assign an AMODE value to the program module. The binder selects the most
restrictive AMODE of all control sections in the input to the program module. An AMODE value of 24 is
the most restrictive; an AMODE value of ANY is the least restrictive.

Creating programs from source modules

Chapter 2. Creating programs from source modules 29

An AMODE value is provided for each entry point into the program module. The main program AMODE
value is stored in the primary directory entry for the program module. Each alias directory entry contains
the AMODE value for both the main entry point and the alias or alternate entry point.

Residence mode
You assign a residence mode (RMODE) to specify where the module must be loaded in virtual storage.
They cannot be loaded in a data space. Residence modes are:
24

Indicates that the module must reside below the 16-MB virtual storage line (within 24-bit
addressable virtual storage).

ANY | 31
Indicates that the module might reside anywhere in virtual storage below the 2-GiB virtual storage
bar. 31 is a synonym for ANY.

64
Indicates that the module might reside anywhere in virtual storage either above or below the 2-GB
virtual storage bar.

MIN
Indicates that the binder chooses an RMODE as the minimum value based on all the provided inputs.
Specifying RMODE(MIN,COMPAT) has the same effect as when the RMODE option is unspecified.

SPLIT
Indicates that the module is split into 2 class segments, , corresponding to two of the three possible
load - below the 16MB line, above the 16MB line and above the 2GB bar. For more information, see
“RMODE: Residence mode option” on page 92.

The binder places the RMODE value in each directory entry applicable to that program module.
RMODE option and multi-text class modules

Beginning with z/OS V1R12, the binder RMODE option applies by default to all initial load classes. This
can be overridden to pre-z/OS V1R12 behavior by specifying the RMODE scope as COMPAT.

RMODE(64)
When neither binder options RMODE=64 nor RMODEX are specified, RMODE(64) ESD are treated as
RMODE(ANY) for module loading and execution, with the exception of data class C_WSA64, which
can be loaded above the 2-gigabyte bar. In this case, the map in the binder listing and ESD records
obtained from program objects through the binder API (for example, by the AMBLIST service aid) will
show the original RMODE. However, for load modules, the ESD records are permanently modified.

AMODE and RMODE hierarchy
The binder uses the following hierarchy to determine the addressing and residence modes of the program
module output:

1. Values specified on the binder MODE control statement. See “MODE statement” on page 120 for more
information.

2. Values specified in the PARM field of the EXEC statement used to invoke the binder. See “AMODE:
Addressing mode option” on page 77 and “RMODE: Residence mode option” on page 92 for more
information.

3. For AMODE, value specified on the END record of a GOFF object module if the entry point from the
END record is used as the source of the primary entry point. The specified AMODE will be used for the
primary entry point and true aliases.

4. Values in the ESD data produced by the AMODE or RMODE assembler statements or by the compiler
5. Default values of AMODE=24 and RMODE=24 when neither AMODE nor RMODE have any specified or

derivable values.

Creating programs from source modules

30 z/OS: z/OS MVS Program Management: User's Guide and Reference

AMODE and RMODE combinations
If any of the following (AMODE, RMODE and RMODEX) are not specified on a MODE control statement or
in the PARM field of an EXEC statement, the binder derives a value based on information in the ESD.

If RMODE is not specified or is specified as MIN, RMODE 24 is assigned if either:

• Any section in the module has an RMODE of 24 (note that resident LPA-resident sections resulting from
the use of the RES Loader option are not considered when determining RMODE).

• An AMODE of 24 has been specified or defaulted.

If any section in the module has an RMODE of ANY (31), or RMODEX is not specified, the module is
assigned an RMODE of ANY (31).

Otherwise, the module is assigned an RMODE of 64. Some sections (for example, those resident in the
LPA) are not considered when determining RMODE.

If RMODE is specified (other than MIN or SPLIT), the RMODE is assigned to the entire module.

If AMODE is not specified, each entry point and alias in the module is assigned the AMODE of that entry
point. If the entry point or alias does not correspond to a defined symbol or the symbol does not specify
an AMODE, the AMODE of the control section containing the entry point or alias will be used.

If the AMODE of the section containing the entry point is AMODE(MIN) then the entry point is assigned
the most restrictive AMODE of all control sections in the input to the program module. Note that the
AMODE(MIN) can be in effect due to the conversion of ESD values AMODE(ANY) RMODE(ANY) (see
“Addressing and residence modes” on page 29).

AMODE and RMODE validation
The binder validates the AMODE and RMODE combination according to the following table:

RMODE=24 RMODE=ANY RMODE=64

AMODE=24 valid invalid invalid

AMODE=31 valid valid invalid

AMODE=ANY valid invalid invalid

AMODE=64 valid valid valid

A combination of AMODE=ANY and RMODE=ANY is changed to AMODE=31 and RMODE=ANY unless
AMODE=ANY has been directly specified on a control statement or batch parameter. In this case, an error
message is issued.

If AMODE is equal to 24 or ANY and RMODE=ANY has been directly specified as a PARM field option or on
a control statement, an error message is issued and processing continues.

If AMODE is equal to 24, 31 or ANY and RMODE=64 has been directly specified as a PARM field option or
on a control statement, an error message is issued and processing continues.

AMODE and RMODE for overlay programs
All entry points in program modules built in overlay format are assigned an AMODE of 24 and the program
modules are assigned an RMODE of 24 regardless of any other values you have specified. RMODE(SPLIT)
is not supported for overlay programs.

Module reusability
Reusability is a generic term describing the degree to which a module can be shared, reused or replaced
during execution. It incorporates the following attributes:

• Nonreusable. The module is designed for single use only and must be refreshed before it can be reused.

Creating programs from source modules

Chapter 2. Creating programs from source modules 31

• Serially reusable. The module is designed to be reused and therefore must contain the necessary logic
to reset control variables and data areas at entry or exit. A second task cannot enter the module until
the first task has finished.

• Reenterable (reentrant). The module is designed for concurrent execution by multiple tasks. If a
reenterable module modifies its own data areas or other shared resources in any way, appropriate
serialization must be in place to prevent interference between using tasks.

• Refreshable. All or part of the module can be replaced at any time, without notice, by the operating
system. Therefore, refreshable modules must not modify themselves in any way.

Unlike AMODE, reusability is an attribute of the entire module, not any particular entry point. It should
be chosen based on the operational characteristics of the module and not on the reusability status of
individual control sections or data classes.

The linkage editor processed the serially reusable (REUS), reenterable (RENT) and refreshable (REFR)
attributes as separate and independent options. The binder, however, treats them as a single, multivalued
attribute with an implied hierarchical relationship: “refreshable” implies “reenterable” and “reenterable”
implies “serially reusable”. This might result in some confusion for prior linkage editor users who are
accustomed to specifying inconsistent combinations of these attributes, such as “REFR,NORENT”. In such
situations the binder selects the strongest reusability attribute among those specified. In addition, unlike
the linkage editor, the binder honors any override of reusability specified in the PARM statement.

In order to eliminate such conflicts, specify only a single attribute from the set. Use the keyword(value)
form, such as REUS(RENT), rather than keyword-only specifications, such as NORENT or REFR.

Binder extensions supporting the Language Environment

Compatibility with prelinker functions
The binder can directly process XOBJ modules in the format accepted by the IBM Language Environment
for MVS & VM prelinker, a utility used as an interim step in the binding of many Language Environment-
enabled programs. See z/OS Language Environment Programming Guide for additional information.

Added capability in the binder allows for direct processing of XOBJ object modules, obviating the need
for the prelinker and simplifying the process for binding such programs. This provides for the creation of
rebindable modules, since the binder preserves sufficient information in the saved module to allow the
replacement of one or more compilation units.

The binder supports control statements that are functionally equivalent to those offered by the prelinker.
The following table shows the relationships between binder and prelinker control statements.

Binder Prelinker

AUTOCALL LIBRARY with OE options

LIBRARY* LIBRARY with NOOE option

IMPORT IMPORT

RENAME RENAME

*The binder LIBRARY statement also accepts the same syntax used with the binder AUTOCALL statement
(that is, specification of only a library name). The difference is that AUTOCALL is for incremental
(immediate) autocall, while LIBRARY adds to the libraries used for final autocall. This latter LIBRARY
capability is unique to the binder, it is not available with the Prelinker.

Note: Prelinker replacement is supported by the binder only for program objects in PO3 (or later) format.
It is not supported for output saved in a load module.

Each XOBJ module will be converted to one or more named or unnamed sections in the program
object. The input XOBJ text will be moved to specific binder text classes. The recipe cards in the XOBJ
that provide instructions for initializing writable static will be converted into actual initialized text. The
following table shows the major classes generated during XOBJ conversion.

Creating programs from source modules

32 z/OS: z/OS MVS Program Management: User's Guide and Reference

Input XOBJ Class in output program object

reentrant code C_CODE

writeable static C_WSA

text in csect STINIT C_@@STINIT

text in csect DLLI C_@@DLLI

text in csect PPA2 C_@@PPA2

The binder also creates a table for use by Language Environment runtime routines in class B_LIT. If they
are generated, these classes can be seen in the binder map output for section IEWBLIT.

Binder support for DLLs
DLL support in MVS is provided by the z/OS Language Environment component. Only programs that are
Language Environment-enabled can serve as DLLs or use DLL routines.

The DYNAM(DLL) option controls DLL processing. If DYNAM(DLL) is specified the binder will:

• In some cases, create linkage descriptors in C_WSA
• Process IMPORT control statements
• Build a table of information about imported and exported functions for the use of Language

Environment run-time routines. This will appear in the map as class B_IMPEXP.
• Create a side file of IMPORT control statements, corresponding to functions and data being exported by

the module being built.

Note: The binder creates sections named IEWBLIT and IEWBCIE. Since this could potentially cause
conflict with user-created section names, avoid using section names beginning with the characters IEWB.

For guidance on how to create DLLs and dynamic link libraries, see Building and Using Dynamic Link
Libraries (DLLs) in z/OS Language Environment Programming Guide.

Creating programs from source modules

Chapter 2. Creating programs from source modules 33

Creating programs from source modules

34 z/OS: z/OS MVS Program Management: User's Guide and Reference

Chapter 3. Starting the binder

You can invoke the binder as you would any other program: as a job step, a subprogram or a subtask, and
as a TSO or UNIX System Services command. You can execute the binder as a job step by specifying it
on an EXEC job control statement in the JCL stream; you can execute it as a subprogram or subtask by
using the ATTACH, LINK, LOAD, or XCTL macros. You can execute it under TSO with the LINK or LOADGO
commands or in a UNIX environment with the c89 or ld commands. This topic describes these methods of
invoking the binder.

Note: This section refers to binder processing and output. These concepts apply equally to linkage editor
and batch loader processing unless otherwise noted in Appendix A, “Using the linkage editor and batch
loader,” on page 157. The linkage editor and batch loader cannot process program objects.

Invoking the binder with JCL
You describe execution of the binder and the data sets used by the binder to the system with job control
language (JCL) statements.

This section summarizes those aspects of JCL that apply to the invocation of the binder. The major topics
covered are the EXEC statement, the DD statements, and the cataloged procedures for the binder. You
should be familiar with JCL as described in z/OS MVS JCL User's Guide.

Binder JCL example
Figure 9 on page 35 contains an example of some JCL statements to invoke the binder. You can
tailor these statements for your own programming requirements. These statements are similar to the
linkage editor JCL statements. In fact, we constructed the example by modifying a set of JCL statements
originally used to invoke the linkage editor.

If you need assistance with any of the statements or options, the EXEC statement parameter options are
described in Chapter 6, “Binder options reference,” on page 69 and the input control statements are
described in Chapter 7, “Binder control statement reference,” on page 101. The EXEC and DD statements
are described in the remainder of this topic.

//LKED EXEC PGM=IEWL,PARM='XREF,LIST', IEWL is alias of IEWBLINK
// REGION=2M,COND=(5,LT,prior-step)
//*
//* Define secondary input
//*
//SYSLIB DD DSN=language.library,DISP=SHR optional
//PRIVLIB DD DSN=private.include.library,DISP=SHR optional
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1)) ignored
//*
//* Define output module library
//*
//SYSLMOD DD DSN=program.library,DISP=SHR required
//SYSPRINT DD SYSOUT=* required
//SYSTERM DD SYSOUT=* optional
//*
//* Define primary input
//*
//SYSLIN DD DSN=&&OBJECT,DISP=(MOD,PASS) required
// DD * In-stream control statements
 INCLUDE PRIVLIB(membername)
 ENTRY entname
 NAME modname(R)
/*

Figure 9. Binder JCL example

Starting the binder

© Copyright IBM Corp. 1991, 2021 35

EXEC statement
The EXEC statement is the first statement of every job step. For the binder job step, you can specify:

• The program name of the binder
• Binder options passed to the binder program
• Region size requirements for the binder.

EXEC statement—PGM parameter
The PGM parameter on the EXEC statement names the program to be executed. The binder is executed
using these program names:
IEWBLINK

Binds a program module and stores it in a program library. Alternative names for IEWBLINK are IEWL,
LINKEDIT, HEWL, and HEWLH096.

IEWBLDGO
Binds a program module, loads it into virtual storage, and executes it. Alternative names for
IEWBLDGO are IEWLDRGO, LOADER, and HEWLDRGO.

For example, the following EXEC statement invokes the binder:

//LKED EXEC PGM=IEWBLINK

EXEC statement—PARM field
The EXEC statement can pass various options to the binder using the PARM field. These options perform
the following types of services:

• Assigning module attributes that describe the characteristics of the output program module
• Invoking special binder processing services (for example, exclusive call and automatic call)
• Defining the amount of storage to be used by the binder for processing and output program library

buffers
• Specifying the kind of output the binder is to produce.

These options can be coded in any order in the PARM field, or can be listed in a data set and included
using the OPTIONS keyword.

See Chapter 6, “Binder options reference,” on page 69 for information on individual options.

Preparing the PARM field to invoke the loader
When you invoke the loader, (PGM=IEWBLDGO), both the loader and the loaded program options are
specified in the PARM field. The PARM field has this syntax:

,PARM='[loaderoptions][/programoptions]'

The loaded program options, if any, must be separated from the loader options by a slash (/). If there are
no loader options, the program options must begin with a slash. The entire PARM field can be omitted if
there are neither loader nor loaded program options. Parameters must be enclosed in single quotation
marks when special characters (/ and =) are used.

EXEC statement—REGION parameter
The REGION parameter specifies the maximum amount of storage that can be allocated to satisfy a
request for storage made by the binder. You should normally not need to specify this parameter if
the installation default region size or system procedures specify enough storage. The recommended
minimum region size is 2 MB. While the amount of storage required by the binder is directly related
to the number of pieces being bound together (not necessarily the text size itself, but the number of

Starting the binder

36 z/OS: z/OS MVS Program Management: User's Guide and Reference

CSECTs, load modules, RLDs, etc. being combined), in most cases 2 MB should be sufficient. The binder
executes in 31 bit addressing mode so storage can be obtained from above the line (if available). The
recommended values for region size are 2048 KB for program modules with a text size of 1024 KB or
less, and twice the text size for program modules with a text size greater than 1024 KB. The binder
usually requires a larger region size than the linkage editor. Unlike the linkage editor, the binder does not
use temporary disk data sets when virtual storage is exhausted. In addition, the binder can build larger
programs than the linkage editor, and so might need more virtual storage.

DD statements
Every data set that the binder uses must be described with a DD statement. Each DD statement must
have a name, unless data sets are concatenated. The DD statements for data sets the binder requires
have preassigned names, those for additional input data sets have names you assign, and those for
concatenated data sets (after the first) have no names. When you invoke the binder from another
program, you can allocate some or all of the binder's data sets using dynamic allocation instead of JCL.

Note:

1. The binder supports all data sets allocated in the extended addressing space (EAS) of an extended
address volume (EAV).

2. The binder supports the following dynamic allocation (DYNALLOC or SVC 99) options for all data sets:
S99TIOEX(XTIOT), S99ACUCB(NOCAPTURE), and S99DSABA(DSAB above the line).

Binder DD statements
The binder uses eight types of data sets. Some are required, and the DD statements for all but two use the
preassigned ddnames shown in Table 3 on page 37. The following descriptions give device and data set
information for each binder data set.

Table 3. Binder DDNAMES

Data set ddname Required

Primary input data set SYSLIN Yes

Options data set any name Required when OPTIONS=ddname
coded in PARM field of EXEC statement.

IEWPARMS No

Automatic call library SYSLIB Only if automatic library call is used

Other include library or sequential data
set

any name Required when referenced on INCLUDE
statement

Diagnostic output data set SYSPRINT
SYSLOUT

SYSPRINT is required when using the
IEWBLINK entry point.

Output module library SYSLMOD Required when using the IEWBLINK
entry point.

Alternate output data set SYSTERM Only if the TERM option is specified

Output data set for side file (import
records used during dynamic binding)

SYSDEFSD No

SYSLIN DD statement
The SYSLIN DD statement is required. This statement describes the primary input data set, which can be
a sequential data set, a partitioned data set member, a PDSE member, an in-stream data set, or a z/OS
UNIX file. If it is a z/OS UNIX file, you must specify the PATH parameter and the FILEDATA parameter
must either be unspecified or specified as FILEDATA=BINARY.

Starting the binder

Chapter 3. Starting the binder 37

Each data set in the primary input must contain object modules and control statements, load modules,
or program objects. They cannot be mixed within a data set except that control statements can appear
before or after an object module in the same data set. Data sets can be concatenated under the SYSLIN
DD statement to define the primary input. The binder does not support concatenation of z/OS UNIX files.

“Defining the primary input” on page 46 contains information about input requirements.

The data characteristics vary by data type and are shown in Table 4 on page 38.

Table 4. SYSLIN data set DCB parameters. This table shows the logical record length, block size, and
record format.

LRECL BLKSIZE RECFM

80 80 F, FS, OBJ, XOBJ, control statements, and GOFF

80 32720 (maximum size) FB, FBS OBJ, XOBJ, control statements, and GOFF

84+ 32720 (maximum size) V, VB, GOFF object modules

n/a 32720 (maximum size) U, load modules

n/a 4096 U, program objects

Options data set
A DD statement defining an options data set is required if the OPTIONS keyword has been included in the
PARM field of the EXEC statement. When the OPTIONS keyword is included, some or all of the processing
and attribute options are encoded in a data set instead of in the PARM field. See “OPTIONS: Options
option” on page 89 for information on how to code the options data.

The options DD statement is coded using the same ddname as specified on the OPTIONS keyword. The
DSNAME parameter references an existing file containing 80-byte records. It can be a sequential data set,
a member of a partitioned data set, a z/OS UNIX file sequential data set, or a concatenation of sequential
data sets.

IEWPARMS DD statement
The IEWPARMS DD statement is optional. The DSNAME parameter on the IEWPARMS DD references to
an existing file containing 80-byte records. The data set can be a sequential data set, a member of a
partitioned data set, a z/OS UNIX file sequential data set, or a concatenation of sequential data sets.

SYSLIB DD statement
The SYSLIB DD statement is required if your program has external references that have not been resolved
explicitly, unless you have specified the NOCALL option. This DD statement describes the automatic call
library, which must reside on a direct access storage device. The data set must be a library and you must
not specify member names. You can concatenate any combination of object module libraries and program
libraries for the call library. If object module libraries are used, the call library can also contain any control
statements other than INCLUDE, LIBRARY, and NAME. If this DD statement specifies a z/OS UNIX file, you
can specify either a z/OS UNIX archive library or a PATH parameter that designates a directory.

The required data characteristics for object module libraries are the same as those shown in Table 4 on
page 38. For program libraries, a record format of U is required. For partitioned data set program libraries,
the maximum block size is equal to the maximum for the device used, not the record read. For PDSE
program libraries, the block size is 4 KB. You do not specify a value.

The binder does not support z/OS UNIX files as part of a concatenation.

SYSPRINT and SYSLOUT DD statements
If you use IEWBLINK or an alias of IEWBLINK, the SYSPRINT DD statement is required. If you use
IEWBLDGO or one of its aliases, you can include a SYSLOUT DD statement, but SYSLOUT is not required.
Both SYSPRINT and SYSLOUT describe the diagnostic output data set, which can be a sequential data set

Starting the binder

38 z/OS: z/OS MVS Program Management: User's Guide and Reference

assigned to a printer or to a temporary storage device. If a temporary storage device is used, the data
records contain an ANSI control character as the first byte.

The usual specification for this data set is SYSOUT=*. The binder uses a logical record length of 121 and a
record format of FBA and allows the system to determine an appropriate block size.

Table 5 on page 39 shows the data set requirements for SYSPRINT and SYSLOUT. Block size is the only
information that you can provide.

Table 5. SYSPRINT and SYSLOUT DCB parameters. This table shows the logical record length, block size,
and record format.

LRECL BLKSIZE RECFM

121 121 FA

121 32670 (maximum size) FBA

125 VA or VBA

SYSPRINT or SYSLOUT can also be assigned to a z/OS UNIX file. In this case, FILEDATA=TEXT must also
be specified.

SYSLMOD DD statement
The following SYSLMOD information applies only to the batch interface of the binder:

• The SYSLMOD DD statement is required. It describes the output program library, which must be a
partitioned data set, a PDSE, or a z/OS UNIX file. If it is a z/OS UNIX file, you must specify the PATH
parameter. z/OS UNIX supports the use of an alternate ddname for SYSLMOD.

• A member name can be specified on the SYSLMOD DD statement. If a member name is specified, it is
used only if a name was not specified on a NAME control statement. This member name must conform
to the rules for the name on the NAME control statement (see “NAME statement” on page 121).

• If SYSLMOD is referenced by an INCLUDE statement, a member name on the DD statement must be the
name of an existing member.

Note: If you specify the PATH parameter on this DD statement, but do not specify PATHOPTS or
PATHMODE, the binder assigns attributes for the created file that allow only the file owner to have read,
write, and execute authority.

• When a NAME statement is not used and a member name is supplied on the SYSLMOD DD statement,
the behavior is to REPLACE (just as when using NAME with (R), or SAVEW with REPLACE=YES).

The following SYSLMOD information applies to both the batch interface and the Application Programming
Interface of the binder:

• If the member replaces an identically named member in an existing library, the disposition should be
OLD or SHR.

• If the member is added to an existing library, the disposition should be MOD, OLD, or SHR.
• If no library exists and the member is the first added to a new library, the disposition should be NEW or

MOD.
• If the member is added to an existing library that can be used concurrently by other users in the system

or in other systems sharing the library, the disposition should be SHR.
• Programs which call the binder can specify a different DD name to replace SYSLMOD. All references

here to SYSLMOD also apply to that replacement name.
• If SYSLMOD defines a NEW data set, do not specify the RLSE subparameter because the binder closes

the data set after saving each member.
• Do not specify the FREE=CLOSE parameter on the SYSLMOD dataset, whether it is NEW or OLD.
• The binder writes data to a PDS or PDSE in RECFM=U format.

Starting the binder

Chapter 3. Starting the binder 39

– If the data set is being created in this step without an explicit RECFM, or already exists but has no
record format, the binder will set its record format to U.

– If the data set already has a record format other than U, the binder will not write to it unless you
provide an explicit override of RECFM=U.

- A PDSE cannot contain a mixture of program objects with other data, so an explicit override of
RECFM=U is likely to fail in that case.

- A PDS can contain a mixture of load modules with other data, but overriding the data set record
format may interfere with access to other data in the PDS.

• The binder always assigns a block size of 4 KB to a program object. Procedures used by the binder to
assign block size to a load module are:

1. If the data set is new:

a. When the DCBS option is not specified

– When the data set is created without a block size, the block size is the maximum supported by
the access method for that device type.

– When the data set is created with a block size, the block size specified on the DD statement is
used if it is smaller than the maximum block size supported by the device.

– Certain of the binder options can restrict the blocksize. The block size is:

- 1KB if the DC option is specified,
- the value specified on the MAXBLK option,
- one-half the value specified for value2 on the SIZE option,

b. When the DCBS option is specified, the block size is the smaller of:

– The maximum block size for the device
– The value of the BLKSIZE parameter on the SYSLMOD DD statement
– The actual output buffer length.

c. The minimum block size is 256 bytes.
2. If the data set already exists:

– When the DCBS option is not specified, the larger of the existing block size or 256 bytes is used.
– See “DCBS option” on page 81 for the block size determination when the block size exists and

the DCBS option is specified.

In the following example, the SYSLMOD DD statement specifies a permanent partitioned data set library
on an IBM 3390 direct access storage device:

//SYSLMOD DD DSNAME=USER.USERLIB(TAXES),DISP=NEW,UNIT=3390,...

The binder assigns a record format of U and a block size of 32760 bytes. However, consider the following
example:

//LKED EXEC PGM=IEWBLINK,PARM='XREF,DCBS'
⋮
//SYSLMOD DD DSNAME=USER.USERLIB(TAXES),DISP=SHR,UNIT=3390,
// DCB=BLKSIZE=8000

The binder still assigns a record format of U, but the block size is 8000 bytes rather than 32760 bytes
because of the use of the DCBS option.

SYSTERM DD statement
The SYSTERM DD statement is optional. It defines a data set for binder messages that supplements the
SYSPRINT data set.

Starting the binder

40 z/OS: z/OS MVS Program Management: User's Guide and Reference

SYSTERM output is defined by including a SYSTERM DD statement and specifying TERM in the PARM field
of the EXEC statement. SYSTERM output consists of messages that are written to both the SYSTERM and
SYSPRINT data sets.

The following example shows the SYSTERM DD statement used to specify the system output unit:

//SYSTERM DD SYSOUT=A

The data set characteristics for SYSTERM (LRECL=80 and RECFM=FB) are supplied by the binder. The
block size can be any multiple of 80 bytes acceptable to the hardware. If necessary, the binder modifies
the data set characteristics of an existing data set to enforce the LRECL and RECFM values. SYSTERM can
also be allocated to a z/OS UNIX file. In this case, FILEDATA=TEXT must also be specified.

SYSDEFSD DD statement
When the DYNAM(DLL) option is used to build a DLL module, a side file might be generated along with
it. The side file is saved in the data set represented by the SYSDEFSD ddname. The side file contains the
symbols from which other DLLs can import; that is, which symbols the DLL "exports". Consequently, a side
file contains a collection of IMPORT control statements that can be used by other DLLs in order to resolve
their own external references during dynamic linking.

SYSDEFSD can be a sequential data set, a z/OS UNIX file, a PDS, or a PDSE. If your job binds multiple
DLLs and SYSDEFSD represents a sequential data set or a z/OS UNIX file, the side file records of a given
DLL can overwrite or append to the records of a previously saved side file, depending on the DISP or
PATHOPTS parameter of your side file ddname.

If SYSDEFSD is a PDS or a PDSE, the binder saves the side file as a member of the indicated partitioned
data set. The binder progresses through the following sources until it determines the name to use for the
side file:

1. The binder uses the member name specified in the JCL for the SYSDEFSD DD. Note that in this case
the side file is treated as a sequential file.

2. If no member was specified, the binder uses the name specified in the NAME control statement for the
saved DLL.

3. If there is no NAME control statement, the binder uses the name expressed in the JCL SYSLMOD DD
statement.

The SYSDEFSD DD statement is optional. However, when it is absent, the binder issues a warning
message if at bind time a module (DLL) generates export records and the DYNAM(DLL) binder option
has been specified. Note that the side file can be referred to as the definition side deck by other products.

Table 6 on page 41 shows the data set requirements for SYSDEFSD.

Table 6. SYSDEFSD DCB parameters. This table shows the logical record length, block size, and record
format.

LRECL BLKSIZE RECFM

80 32760 (maximum size) F,FB

Additional DD statements
Each ddname specified on an AUTOCALL, INCLUDE or LIBRARY control statement must be defined with
a DD statement. These DD statements describe sequential data sets, partitioned data sets, PDSEs, or
z/OS UNIX files. With the exception of z/OS UNIX files, the DD statement may describe a concatenation of
object module libraries and program libraries.

You specify the ddnames along with any other necessary information. The requirements for these data
sets are shown in Table 7 on page 42.

Starting the binder

Chapter 3. Starting the binder 41

Table 7. INCLUDE and LIBRARY control statements DCB parameters. This table shows the logical record
length, block size, and record format.

Data set contents LRECL BLKSIZE RECFM

Object modules or control
statements

80 80 80 32760 (maximum) F, FS FB, FBS

Load modules Ignored Maximum for device, or value
specified on the MAXBLK option,
whichever is smaller

U

Program objects Ignored 4096 U

Binder cataloged procedures
The MVS operating system allows you to store job control statements under a unique member name in a
procedure library. Such a series of statements is called a cataloged procedure. These JCL statements can
be recalled at any time to specify the requirements for a job. To request this procedure, place an EXEC
statement in the input stream. This EXEC statement specifies the unique member name of the desired
procedure.

The specifications in a cataloged procedure can be temporarily overridden, and DD statements can be
added. The information that you alter is in effect only for the duration of the job step; the cataloged
procedures are not altered permanently. Any additional DD statements that you supply must follow
those that override existing JCL statements in the same procedure step. For more information on using
cataloged procedures, see z/OS MVS JCL User's Guide.

Two binder cataloged procedures are provided: a single-step procedure that binds the input and produces
a program module (LKED procedure), and a two-step procedure that binds the input, produces a program
module, and executes that module (LKEDG procedure). Many of the cataloged procedures provided for
language translators also contain binder steps. The EXEC and DD statement specifications in these steps
are similar to the specifications in the cataloged procedures described in the following paragraphs.

LKED procedure
LKED is a single-step procedure that binds the input, produces a program module, and passes the module
to another step in the same job.

//LKED EXEC PGM=HEWLH096,PARM='MSGLEVEL(4),XREF,LIST,LET,NCAL',
// REGION=2M
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DDNAME=SYSIN
//SYSLMOD DD DSN=&&GOSET(GO),SPACE=(1024,(50,20,1)),
// UNIT=SYSDA,DISP=(MOD,PASS)

Statement description
A description of the statements in the procedure follows:

EXEC
The PARM field specifies the NCAL option. If an automatic call library is used, you must override the
NCAL option and add a SYSLIB DD statement.

SYSPRINT
Specifies the SYSOUT class A, which is either a printer or a temporary storage device. If a temporary
storage device is used, ANSI control characters accompany the data to be printed.

SYSLIN
The specification of DDNAME=SYSIN allows you to specify any input data as long as it fulfills the
requirements for binder input. You must define the input data with a SYSIN DD statement. This data
can be either in the input stream or reside in one or more separate data sets.

If the data is in the input stream, use the following DD statement:

Starting the binder

42 z/OS: z/OS MVS Program Management: User's Guide and Reference

//LKED.SYSIN DD *

Place the SYSIN statement following all overriding DD statements for the LKED catalog procedure.
The object module decks and control statements should follow the SYSIN statement, with a delimiter
statement (/*) at the end of the input.

If the data resides in separate data sets, use the following DD statement:

//LKED.SYSIN DD (parameters describing the input data set)

Place the SYSIN statement following all overriding DD statements for the LKED catalog procedure.
Several data sets can be concatenated as described in Chapter 4, “Defining input to the binder,” on
page 45.

SYSLMOD
Specifies a temporary data set and a general space allocation. The disposition allows the next job
step to execute the program module. If the module is to reside permanently in a library, these general
specifications must be overridden.

Invoking the LKED procedure
To invoke the LKED procedure, code the following EXEC statement:

//stepname EXEC LKED

The following example shows a sample JCL sequence for using the LKED procedure in one step to bind
object modules to produce a program module, then execute the program module in a subsequent step.

//LESTEP EXEC LKED
 (Overriding and additional DD statements for the LKED step)
//LKED.SYSIN DD *
 (Object module decks and control statements)
//EXSTEP EXEC PGM=*.LESTEP.LKED.SYSLMOD
 (DD statements and data for load module execution)

LESTEP invokes the LKED procedure and EXSTEP executes the program module produced by LESTEP.

LKEDG procedure
LKEDG is a two-step procedure that binds the input, produces a program module, and executes that
module. The statements in this procedure are shown in the following example. The two procedure steps
are named LKED and GO. The specifications in the statements in the LKED step are identical to the
specifications in the LKED procedure.

//LKED EXEC PGM=HEWLH096,PARM='MSGLEVEL(4),XREF,LIST,NCAL',
// REGION=2M
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DDNAME=SYSIN
//SYSLMOD DD DSN=&&GOSET(GO),SPACE=(1024,(50,20,1)),
// UNIT=SYSDA,DISP=(MOD,PASS)
//GO EXEC PGM=*.LKED.SYSLMOD,COND=(4,LT,LKED)

GO Step
The EXEC statement specifies that the program to be executed is the program module produced in
the LKED step of this job. This module was stored in the data set described on the SYSLMOD DD
statement in that step. (If a NAME statement was used to specify a member name other than that
used on the SYSLMOD statement, use the LKED procedure and provide your own GO step.)

The condition parameter specifies that the execution step is bypassed if the return code issued by the
LKED step is greater than 4.

Invoking the LKEDG procedure
To invoke the LKEDG procedure, code the following EXEC statement:

Starting the binder

Chapter 3. Starting the binder 43

//stepname EXEC LKEDG

The following example shows a sample JCL sequence for using the LKEDG procedure to bind object
modules, produce a program module, and execute that module.

//TWOSTEP EXEC LKEDG
 (Overriding and additional DD statements for the LKED step)
//LKED.SYSIN DD *
 (Object module decks or control statements, or both)
/*
 (DD statements for the GO step)
//GO.SYSIN DD *
 (Data for the GO step)
/*

Invoking the binder under TSO
You can invoke the binder under TSO (Time Sharing Option) with the LINK and LOADGO commands. You
may also be able to run it from an ISPF foreground panel, and if you want to do all of the allocations
yourself, you can use CALL.

The LINK command creates a program module and saves it in either a partitioned data set or PDSE
program library.

When using the LINK command to process binder control statements, you must allocate any referenced
ddnames before the LINK command is invoked. The binder gives you the capability of including modules
and control statements from the automatic call library (SYSLIB) or including program modules from the
module output library (SYSLMOD). If you specify SYSLIB or SYSLMOD on an INCLUDE statement but have
not allocated data sets to those ddnames, the binder will attempt to process the INCLUDE statement
using the data sets indicated on the LIB or LOAD parameters, respectively.

The LOADGO command creates and executes a program module. The module is not saved in a program
library. The LOADGO command invokes a prompter that allows you to define any necessary data sets to
the system; you can use LOADGO operands to specify the loading options the job requires.

To use the TSO CALL command, you first need to use ALLOCATE to set up file names corresponding to the
JCL DD statements described earlier in this topic. Then, use the following command to invoke the binder:

CALL *(IEWL) 'options'

See z/OS TSO/E Command Reference for the procedures for using these commands.

Invoking the binder from the z/OS UNIX Shell
You can invoke the binder from the z/OS UNIX shell using the c89 and the ld commands. See z/OS UNIX
System Services Command Reference for more information.

Invoking the Binder from a program
You can pass control to the binder from a program in one of two ways:

1. As a subprogram, with the execution of a CALL macro instruction (after the execution of a LOAD macro
instruction), a LINK macro instruction, or an XCTL macro instruction.

2. As a subtask with the execution of the ATTACH macro instruction.

You can also request binder services through either of two application programming interfaces. For
additional information, see z/OS MVS Program Management: Advanced Facilities.

Starting the binder

44 z/OS: z/OS MVS Program Management: User's Guide and Reference

Chapter 4. Defining input to the binder

Batch input to the binder consists of the primary input data set and additional data sets. You define
the primary input data set using job control statements. You can include more modules by specifying
additional control statements and by directing the binder to use call libraries.

Input data sets can contain control statements, object modules of any type, load modules and program
objects. The following table shows the data set types in which data can reside.

Sequential data
set

PDS member PDSE member z/OS UNIX file

Control Statements X X X X

Object Modules (all
types)

X X X X

Load Modules X

Program Objects X X

A single library member can contain only one program object or load module, but any number of control
statements and object modules in combination.

z/OS UNIX files can contain binder input of all types except load modules. You specify z/OS UNIX
either by coding the PATH parameter on your JCL or by providing the path name on the INCLUDE or
AUTOCALL control statements. See Chapter 7, “Binder control statement reference,” on page 101 for
more information. Where sequential processing or archive file access is required, you must include the
full file name on the PATH parameter; otherwise, code only the directory name for PATH, omitting the last
level of qualification (file name). The file name will be supplied by the binder, either from the INCLUDE
statement or from the unresolved reference during autocall.

In addition to the data set type, you must consider how the binder will access the data set. Sequential
access requires that a physical sequential data set be specified or that a member name be specified with
the library dsname. Partitioned access requires that a partitioned data set, PDSE, z/OS UNIX archive file,
or z/OS UNIX directory be specified without an associated member or file name. Access requirements
depend on the time that the input is required:

• Primary input is accessed sequentially. Any library in the concatenation must include a member name
with the dsname or path.

• Secondary (included) input can be either sequential or partitioned. If partitioned, the member name(s)
must be specified on the INCLUDE control statement.

• Autocalled input must be partitioned.

The binder supports mixed concatenations of the above, with the following exceptions:

• You must not mix data set types in a single concatenation. All concatenated data sets must be either
partitioned or sequential, not both. A PDS or PDSE member is treated as a sequential data set

• The binder does not support z/OS UNIX files concatenated with other z/OS UNIX files or data sets of any
type.

Note: This topic refers to binder processing and input. These concepts apply equally to linkage editor
and batch loader processing unless noted otherwise in Appendix A, “Using the linkage editor and batch
loader,” on page 157. The linkage editor and batch loader cannot process program objects, extended
object modules, GOFF modules, s or z/OS UNIX files.

Input into the binder

© Copyright IBM Corp. 1991, 2021 45

Defining the primary input
The primary input, required for every binder job step, is defined on a DD statement with the ddname
SYSLIN. Primary input can be:

• A sequential data set
• A member of a partitioned data set (PDS)
• A member of a partitioned data set extended (PDSE)
• Concatenated sequential data sets, or members of partitioned data sets or PDSEs, or a combination
• A z/OS UNIX file.

The primary data set can contain object modules, control statements, load modules and program objects.
All modules and control statements are processed sequentially and their order determines the order
of binder processing. The order of the sections after processing, however, might not match the input
sequence.

The following examples show the statements needed to define input to the binder.

Object modules, load modules and program objects
Primary input to the binder can be one or more object modules, load modules or program objects. The
modules are created and passed by a previous job step or created in a separate job.

As a member of a partitioned data set or PDSE
You can use a module in a partitioned data set or PDSE as primary input to the binder by specifying its
data set name and member name on the SYSLIN DD statement. In the following example, the member
named TAXCOMP in the object module library USER.LIBROUT is the primary input. USER.LIBROUT is a
cataloged data set:

//SYSLIN DD DSNAME=USER.LIBROUT(TAXCOMP),DISP=SHR

The library member is processed as if it were a sequential data set.

Members of partitioned data sets or PDSEs can be concatenated with other input data sets, as follows:

//SYSLIN DD DSNAME=USER.OBJMOD,DISP=SHR,...
// DD DSNAME=USER.LIBROUT(TAXCOMP),DISP=SHR

Library member TAXCOMP is concatenated to data set USER.OBJMOD.

Passed from a previous job step
A module used as input can be passed from a previous job step to a binder job step in the same job (for
example, the output from the compiler is direct input to the binder). In the following example, an object
module that was created in a previous job step (STEPA) is passed to the binder job step (STEPB):

//STEPA EXEC
//SYSGO DD DSNAME=&&OBJECT,DISP=(NEW,PASS),...
⋮
//STEPB EXEC
//SYSLIN DD DSNAME=&&OBJECT,DISP=(OLD,DELETE)

The temporary data set name &&OBJECT, used in both job steps, identifies the object module as the
output of the language processor on the SYSGO DD statement, and as the primary input to the binder on
the SYSLIN DD statement.

Created in a separate job
If the only input to the binder is an object module from a previous job, the SYSLIN DD statement contains
the information needed to locate the object module. For example:

Input into the binder

46 z/OS: z/OS MVS Program Management: User's Guide and Reference

//SYSLIN DD DSNAME=USER.OBJMOD,DISP=(OLD,DELETE)

Control statements
The primary input data set can consist solely of control statements. When the primary input is control
statements, input modules are specified on INCLUDE control statements (see “Secondary (included)
input” on page 48). The control statements can be either placed in the input stream or stored in a data
set.

In the following example, the primary input consists of control statements in the input stream:

//SYSLIN DD *
 Binder Control Statements
/*

In the next example, the primary input consists of control statements stored in the member INCLUDES in
the data set USER.CTLSTMTS:

//SYSLIN DD DSNAME=USER.CTLSTMTS(INCLUDES),DISP=SHR,...

In either case, the control statements can be any of those described in Chapter 7, “Binder control
statement reference,” on page 101.

Modules and control statements
The primary input to the binder can contain modules and control statements. The object modules and
control statements can be in the same data set or in different data sets, but cannot be mixed in the same
data set with load modules or program objects.

If the modules and statements are in the same data set, this data set is specified in the SYSLIN DD
statement. If the modules and statements are in different data sets, the data sets are concatenated.
The binder accepts concatenated object modules, load modules and program objects as primary input.
However, the binder does not support z/OS UNIX files as part of a concatenation. The control statements
can be defined either in the input stream or as a separate data set.

Control statements in the input stream
Control statements can be placed in the input stream and concatenated to an object module data set, as
follows:

//SYSLIN DD DSNAME=&&OBJECT,...
// DD *
 Binder Control Statements
/*

Another method of handling control statements in the input stream is to use the DDNAME parameter, as
follows:

//SYSLIN DD DSNAME=&&OBJECT,...
// DD DDNAME=SYSIN
 .
 .
 .
//SYSIN DD *
 Binder Control Statements
/*

Note: The binder cataloged procedures use DDNAME=SYSIN for the SYSLIN DD statement to specify the
primary input data set required.

Input into the binder

Chapter 4. Defining input to the binder 47

Control statements in a separate data set
A separate data set that contains control statements can be concatenated to a data set that contains
an object module. Control statements for a frequently used procedure (for example, a series of
INCLUDE statements) can be stored permanently. In the following example, the members of data set
USER.CTLSTMTS contain binder control statements. One of the members is concatenated to data set
&&OBJECT.

//SYSLIN DD DSNAME=&&OBJECT,DISP=(OLD,DELETE),...
// DD DSNAME=USER.CTLSTMTS(MEDIA),DISP=SHR,...

The control statements in the member named MEDIA of the data set USER.CTLSTMTS are used to
structure the resultant module.

Secondary (included) input
The INCLUDE control statement requests that the binder use additional data sets as input. These can be
any of the sequential data set types acceptable for primary input.

In addition, INCLUDE can refer to private libraries rather than sequential files. Concatenations must
contain only libraries or sequential files (including library members), not both.

The INCLUDE statement specifies the ddname of a DD statement that describes the data set to be used
as additional input. If the DD statement describes a library (partitioned data set, PDSE, or z/OS UNIX
directory) the INCLUDE statement also contains the name of each member to be used. See “INCLUDE
statement” on page 114 for the syntax of the INCLUDE statement.

When an INCLUDE control statement is encountered, the binder processes the module or modules
indicated. Figure 10 on page 49 shows the processing of an INCLUDE statement. In the illustration, the
primary input data set is a sequential data set named OBJMOD that contains an INCLUDE statement.
After processing the included data set, the binder processes the next primary input item. The arrows
indicate the flow of processing.

If an included data set also contains an INCLUDE statement, that INCLUDE is processed at the time it is
encountered, effectively nesting includes. Any number of nested INCLUDE statements are possible with
the binder. Figure 10 on page 49 demonstrates the flow of processing for single INCLUDE statements.
Note that the binder returns to the Include module after processing the included module whereas the
linkage editor does not.

Input into the binder

48 z/OS: z/OS MVS Program Management: User's Guide and Reference

Figure 10. Processing of one INCLUDE control statement

Figure 11 on page 49 demonstrates the flow of processing for nested INCLUDE statements.

Figure 11. Processing of nested INCLUDE control statements

Input into the binder

Chapter 4. Defining input to the binder 49

Including sequential data sets
Sequential data sets containing object modules or control statements, or both, can be specified by an
INCLUDE control statement. In the following example, an INCLUDE statement specifies the ddnames of
two sequential data sets to be used as additional input:

//ACCOUNTS DD DSNAME=PROJECT.ACCTROUT,DISP=SHR,...
//INVENTRY DD DSNAME=PROJECT.INVENTRY,DISP=SHR,...
//SYSLIN DD DSNAME=PROJECT.QTREND,...
// DD *
 INCLUDE ACCOUNTS,INVENTRY
/*

Each ddname could have been specified on a separate INCLUDE statement. Using either method a DD
statement must be specified for each ddname.

Another method of performing the preceding example is given in “Including concatenated data sets” on
page 52.

Including UNIX Files
z/OS UNIX files can be specified directly on an INCLUDE statement, or indirectly through DD statements
that in turn reference z/OS UNIX files. See “Example 2” on page 116 for examples of both.

If you specify the UNIX file indirectly through a DD statement, you must specify an absolute (beginning
with "/").

When you specify the UNIX file indirectly, you may either put the whole path in the DD statement and
INCLUDE the DD name (such as in “Example A: Putting the whole path in the DD statement” on page
50), or use a "member syntax" in the INCLUDE statement (as in Examples B, C, and D).

Example A: Putting the whole path in the DD statement
In this example INPUT is the DD name for the file to be included. PATH= in this case specifies a whole
path which must be in quotation marks because it contains lower case letters. INPUT is then used in the
INCLUDE statement:

//INPUT DD PATH='/u/userid/hello.o',PATHDISP=(KEEP,KEEP)
//SYSLMOD DD DSN=USERID.PDSE.LOAD,DISP=SHR
//SYSLIN DD *
 INCLUDE -IMPORTS,-ATTR,INPUT
 NAME TEST(R)
/*

When you use "member syntax" in the INCLUDE statement, rather than putting the whole path in the DD
statement, you put a directory path in the DD statement, and then in the INCLUDE statement you specify
the file in the directory you want included. In this case, there are three rules to remember. First, the
PATH= in the DD statement must point to a directory, not a file. As before, the path should be in quotation
marks if it contains lower case letters.

Secondly, you must put information needed to locate the file within the directory in the INCLUDE
statement.

Finally, if the information in the INCLUDE statement is lower or mixed case, it must be quoted, unless
CASE=MIXED is specified as an invocation option. Examples B, C, and D show three ways to do this.

Example B: Putting a directory path in the DD statement and filename in the
INCLUDE statement
As in “Example A: Putting the whole path in the DD statement” on page 50, the same file, hello.o is
specified, but in this case, the DD name INPUT specifies what directory it is in, and the file name is
specified within parentheses in the INCLUDE statement.

//INPUT DD PATH='/u/userid/',PATHDISP=(KEEP,KEEP)
//SYSLMOD DD DSN=USERID.PDSE.LOAD,DISP=SHR

Input into the binder

50 z/OS: z/OS MVS Program Management: User's Guide and Reference

//SYSLIN DD *
 INCLUDE -IMPORTS,-ATTR,INPUT('hello.o')
 NAME TEST(R)
/*

The INCLUDE "member" can also contain additional directory information. This means you can specify a
directory path in the DD statement, and then a subdirectory and file stemming from that directory in the
INCLUDE statement. “Example C: Putting a directory path in the DD statement and a subdirectory path in
the INCLUDE statement” on page 51 and “Example D: Putting a directory path in the DD statement and
using dot notation in the INCLUDE statement” on page 51 illustrate this.

Example C: Putting a directory path in the DD statement and a subdirectory
path in the INCLUDE statement
In this example, hello.o is in a subdirectory, subdir. INPUT specifies the directory that subdir is in, and
the INCLUDE statement specifies the subdirectory and file name. A second file, goodbye.o is also included
that is in the main directory, not in subdir.

//INPUT DD PATH='/u/userid/',PATHDISP=(KEEP,KEEP)
//SYSLMOD DD DSN=USERID.PDSE.LOAD,DISP=SHR
//SYSLIN DD *
 INCLUDE -IMPORTS,-ATTR,INPUT('subdir/hello.o','goodbye.o')
 NAME TEST(R)
/*

Example D: Putting a directory path in the DD statement and using dot
notation in the INCLUDE statement
As in “Example C: Putting a directory path in the DD statement and a subdirectory path in the INCLUDE
statement” on page 51, hello.o is a file in subdir, but now DD statement INPUT specifies a directory
path to sub2, which is a subdirectory within subdir. The file goodnight.o is in sub2 and it is included
by specifying its file name in the INCLUDE statement. The file hello.o is in the parent directory (subdir)
to sub2. In this case UNIX dot notation must be used show that hello.o can be found in sub2's parent
directory. For more on dot notation, see z/OS UNIX System Services User's Guide.

//INPUT DD PATH='/u/userid/subdir/sub2/',PATHDISP=(KEEP,KEEP)
//SYSLMOD DD DSN=USERID.PDSE.LOAD,DISP=SHR
//SYSLIN DD *
 INCLUDE -IMPORTS,-ATTR,INPUT('../hello.o','goodnight.o')
 NAME TEST(R)
/*

Including library members
DD statements referred to by an INCLUDE statement can define a library of files, either by pointing to a
PDS or PDSE, or by pointing to a UNIX directory. The INCLUDE statement can then specify "members"
of that library to be included. For a PDS or PDSE the member names are looked up in the data set
directories. For a UNIX path the "members" listed in the INCLUDE statement are actually names of file
within the directory. There may also be subdirectory path information attached to the file names.

Note that it is always possible to name a specific PDS or PDSE member, or UNIX file name, on the DD
statement, and show only the DD name on the INCLUDE statement. From the binder perspective this is
including sequential data.

See “Including UNIX Files” on page 50 for more information on including UNIX files.

In the following example, one member name is specified on the INCLUDE statement.

//PAYROLL DD DSNAME=PROJECT.PAYROUTS,DISP=SHR,...
//SYSLIN DD DSNAME=&&CHECKS,DISP=(OLD,DELETE),...
// DD *
 INCLUDE PAYROLL(FICA)
/*

Input into the binder

Chapter 4. Defining input to the binder 51

If more than one member of a library is to be included, the INCLUDE statement specifies all the members
to be used from that library. The member names appear in parentheses following the ddname of the
library, and must not appear on the DD statement.

In the following example, an INCLUDE statement specifies two members from each of two libraries to be
used as additional input:

//PAYROLL DD DSNAME=PROJECT.PAYROUTS,DISP=SHR,...
//ATTEND DD DSNAME=PROJECT.ATTROUTS,DISP=SHR,...
//SYSLIN DD *
 INCLUDE PAYROLL(FICA,TAX),ATTEND(ABSENCE,OVERTIME)
/*

Each library could have been specified on a separate INCLUDE statement. Using either method a DD
statement must be specified for each ddname.

Including concatenated data sets
Several data sets can be designated as input with one INCLUDE statement that specifies one ddname.
Additional data sets are concatenated to the data set described on the specified DD statement. There are
two types of concatenation, described separately below. With either type, you can concatenate data sets
with unlike characteristics, such as record format and record length.

Note however, that the binder does not support concatenation of z/OS UNIX files.

Sequential concatenation
This form of concatenation is used when the INCLUDE statement provides a ddname but no member
names. The concatenated data sets can be sequential files, or they can be members of partitioned
data sets with the member name included in the DD statement. Each data set or member listed in the
concatenation may contain a load module, a program object, or any combination of control statements
and object modules.

In the following example, two sequential data sets are concatenated and then specified as input with one
INCLUDE statement:

//CONCAT DD DSNAME=PROJECT.ACCTROUT,DISP=SHR,...
// DD DSNAME=PROJECT.INVENTRY,DISP=SHR,...
//SYSLIN DD DSNAME=PROJECT.SALES,DISP=OLD,...
// DD *
 INCLUDE CONCAT
/*

When the INCLUDE statement is recognized, the contents of the sequential data sets
PROJECT.ACCTROUT and PROJECT.INVENTRY are processed.

Library concatenation
This form of concatenation is used when the INCLUDE statement provides one or more member names.
The concatenated data sets must all be partitioned data sets without any member name included in
the DD statement. Each member referenced by the INCLUDE statement may contain a load module, a
program object, or any combination of control statements and object modules.

Members from more than one library can be designated as input with one ddname on an INCLUDE
statement. In this case, all the members are listed on the INCLUDE statement. The partitioned data sets
or PDSEs are concatenated using the ddname from the INCLUDE statement:

//CONCAT DD DSNAME=PROJECT.PAYROUTS,DISP=SHR,...
// DD DSNAME=PROJECT.ATTROUTS,DISP=SHR,...
//SYSLIN DD DSNAME=PROJECT.REPORT,DISP=OLD,...
// DD *
 INCLUDE CONCAT(FICA,TAX,ABSENCE,OVERTIME)
/*

Input into the binder

52 z/OS: z/OS MVS Program Management: User's Guide and Reference

When the INCLUDE statement is read, the two libraries PROJECT.PAYROUTS and PROJECT.ATTROUTS are
searched for the four members and the members are processed as input. Library directories are searched
in the order of library appearance in the JCL.

Resolving external references
You can request that the binder automatically search libraries to resolve external references that were not
resolved during primary and secondary input processing. The binder can also process unresolved external
references found in modules from additional data sources.

Note: The following discussion of automatic library call services does not apply to unresolved weak
external references. They are left unresolved unless resolved to external symbols defined by modules
included in the process of resolving other external references.

There are three ways to obtain automatic library call:

1. By providing AUTOCALL control statements. This is called incremental autocall and is processed at the
time the control statement is encountered, using a source specified on the statement.

2. By providing LIBRARY control statements which specify sources to resolve references. Processing for
these statements is deferred until all primary and secondary input sources have been exhausted.

3. By default if unresolved references remain at the end of the processing. The SYSLIB DD is used for this
autocall.

There are also two ways to suppress automatic library call processing:

1. By providing an NCAL (or NOCALL) invocation option. This suppresses all automatic library call
processing.

2. By providing LIBRARY control statements which specify names of external references that should not
be resolved by automatic library call.

When you have requested automatic library call, the binder searches the directory of the automatic call
library for an entry that matches the unresolved external reference. When a match is found, the entire
member is processed as input to the binder.

Automatic library call can resolve an external reference when:

• The external reference is a member name or an alias of a module in the call library, AND
• The external reference is defined as an external name in the external symbol dictionary of a module

contained in that member.

If an unresolved external reference is a member name or an alias in the library, but is not an external
name in that member, the member is processed but the external reference remains unresolved unless it is
subsequently defined.

When resolving external references, the binder searches the call library defined on the SYSLIB DD
statement. The call library can contain program objects, load modules, or object modules and control
statements (except INCLUDE, LIBRARY, and NAME).

Modules from libraries other than the SYSLIB call library can be searched by the binder as directed by
the LIBRARY control statement. The library specified in the control statement is searched for member
names that match specific external references that are unresolved at the end of input processing. If any
unresolved references are found in the modules located by automatic library call, they are resolved by
another search of the library. Any external references not specified on a LIBRARY control statement are
resolved from the library defined on the SYSLIB DD statement.

To prevent the binder from automatically searching call libraries, use either the LIBRARY statement for
selected unresolved external references, or the NCAL option on the EXEC statement for all unresolved
external references. See “Directing external references to a specific library” on page 56 for a discussion
of the LIBRARY control statement and the NCAL option.

Input into the binder

Chapter 4. Defining input to the binder 53

Attribute mismatches: At the end of input processing, the binder will diagnose mismatches in the
XPLINK attribute, 64-bit addressing mode, and the signature fields between caller and callee. A mismatch
is indicated by a severity code 8 error message.

Incremental autocall
The autocall phase can be invoked multiple times. Incremental autocall can be triggered at any point
during primary or secondary input processing by the AUTOCALL control statement (or equivalent API call).

The library name from the autocall request will be used in the same way as SYSLIB is used in standard
(final) autocall. The following functions of final autocall will not take place during incremental autocall:

• Processing of LIBRARY control statements or SETL API requests
• RES processing (see section 4.3.1)
• C Renaming logic
• Invocation of the INTFVAL exit
• Determination of Imports and Exports
• Error messages relating to unresolved references.

Autocall with C370lib data sets
The binder supports autocall from both C370lib data sets and z/OS UNIX archive libraries. A C370lib
is created by the C/C++ Object Library Utility (C370LIB or EDCLIB). It is an object module library
that contains a special member named @@DC370$ or @@DC390$. This special member is used as a
replacement for the system directory in the autocall process to perform matches on long symbol names.
In addition it preserves certain additional symbol attributes that cannot be saved in a standard MVS
object library directory entry. In some cases these attributes are used by the binder to select among
variant routines with matching names (see “Autocall matching for C370LIB and archive libraries ” on page
55.)

For each library in the SYSLIB concatenation containing the special member @@DC370$ or @@DC390$,
the names in the special member take precedence over the regular directory entries for that library.

For example given a SYSLIB concatenation

 PDSE
 PDS1 (with @@DC370$ member)
 PDS2

the actual search order would be:

 PDSE directory names
 names from @@DC370$ in PDS1
 PDS1 directory names
 PDS2 directory names

Note: @@DC370$ and @@DC390$ members are ignored during INCLUDE processing. Only member or
alias names in the PDS or PDSE directory can be used to resolve member names listed on an INCLUDE
statement.

Autocall with archive libraries
The binder also supports autocall from z/OS UNIX archive libraries. These archive libraries may contain
members that are object files -- in OBJ, XOBJ and GOFF format and with special directory information
similar to that contained in C370LIB object libraries. They may also contain members which are side files
(of IMPORT control statements), or other files of control statements.

Archive libraries are created by the UNIX System Services ar command. Like C370LIBs, they may
contain attributes used by the binder to select among variant routines with matching names (see
“Autocall matching for C370LIB and archive libraries ” on page 55). Unlike C370LIBs, archives cannot be
concatenated.

Input into the binder

54 z/OS: z/OS MVS Program Management: User's Guide and Reference

Note: Archive libraries cannot be used as the target for INCLUDE statements.

While the ar command is typically used to create archive libraries of object files, it can also be used to
create archive libraries of non-object files, or archive libraries containing a combination of object files and
non-object files. In addition to processing archive library object file members during autocall, the binder
can also process certain non-object file archive library members. Those members must have the following
characteristics:

• Members that are side files (containing IMPORT control statements). To be recognized, an IMPORT
statement must be the very first statement in the file, in the format produced by the binder when it
writes to SYSDEFSD.

• Members that are files specifically identified as containing binder control statements. To be recognized,
the first statement must contain the string "*!" in the first 2 columns, followed by the string "IEWBIND
INCLUDE". These two strings may be separated by blanks, but must be contained in a single statement.

For the binder to process these non-object files, one such file must be positioned as the very first member
of the archive library (excluding the symbol table member, __.SYMDEF). The binder then processes that
first member as if it had been explicitly included as binder input, and then includes any other such
members that it can recognize in that archive library. The following additional points should be noted:

• This processing is performed only during autocall processing of an archive library and only when there
are still unresolved symbols.

• If the archive library also contains members that are object files, it is still processed to attempt to
resolve symbols using those object file members. If the archive library contains neither object file
members nor non-object file members with the characteristics described here, the binder reports an
error when attempting to process that archive library.

• As is the case for object files, these non-object files must be composed of statements that are exactly
80 bytes long, with no newline terminator.

• Processing of non-object files during autocall does not change the binder precedence for resolving
symbols. Just as when a side file is explicitly included, the IMPORT information will only be used to
resolve a symbol dynamically if it is still unresolved after all static resolution is complete.

See z/OS UNIX System Services Command Reference for more information about using the ar utility to
create archive libraries and how to position members within them.

Autocall matching for C370LIB and archive libraries
C370LIB data sets and archive libraries contain special directory information stored by the EDCLIB
procedure and ar command respectively. Recent versions of these programs supply attribute information
about the object files in the libraries, and support multiple copies of the same program in a single library
with variant attribute informnation.

The binder uses some of the attribute information to choose among the variant object files. In priority
order, the binder will attempt to match a called program's attributes with those declared by the caller
based on:

1. 64-bit execution mode
2. Use of XPLINK linkage
3. Writable static

Searching the link pack area
When the binder is invoked for the loader function at entry IEWBLDGO, external references can be
resolved to module names in the system link pack area. The link pack area is searched if the RES option is
in effect. If you use the NORES option, the binder suppresses the search.

When the RES option is in effect, the library search order is:

1. Special libraries defined by the LIBRARY control statement.
2. System link pack area.

Input into the binder

Chapter 4. Defining input to the binder 55

3. Automatic call libraries defined by the SYSLIB DD statement.

Dynamic symbol resolution
After final autocall processing is complete, if the DYNAM(DLL) option is in effect, the binder will attempt
dynamic resolution of those symbols still unresolved. Unresolved symbols are eligible for dynamic
resolution if they have a scope of import/export. Symbols on IMPORT control statements are treated as
definitions, and cause a matching unresolved symbol to be considered dynamically rather than statically
resolved. A dynamically resolved symbol causes an entry in the binder class B_IMPEXP to be created. The
binder does not issue unresolved symbol messages for symbols that are to be dynamically resolved.

Specifying automatic call libraries
If automatic library call is requested, the call library must be a partitioned data set or PDSE described by
a DD statement with a ddname of SYSLIB. Details concerning logical record lengths and record formats for
SYSLIB libraries are given in “SYSLIB DD statement” on page 38. Call libraries can be concatenated.

Call libraries
Most compilers have their own automatic call libraries, which can contain input/output, data conversion,
or other special routines needed to complete a module. Other products provide assembler and compiler
preprocessors that generate calls to such routines in your program. You and your organization can provide
additional libraries. When an object module is created, the assembler or compiler creates an external
reference for these special routines. The appropriate library must be defined when an object module
produced by a particular assembler or compiler is bound; the binder resolves the references from this
library.

See the appropriate user's guide for the name of the call library.

In the following example, a Fortran object module created in STEPA is bound in STEPB, and the Fortran
automatic call library is used to resolve external references:

//STEPA EXEC
//SYSOBJ DD DSNAME=&&OBJMOD,DISP=(NEW,PASS),...
⋮
//STEPB EXEC
//SYSLIN DD DSNAME=&&OBJMOD,DISP=(OLD,DELETE)
//SYSLIB DD DSNAME=SYS1.VSF2FORT,DISP=SHR

Concatenation of call libraries
Call libraries from various sources can be concatenated. When concatenating libraries to define input to
the binder, you can combine libraries containing object modules, load modules, program objects, and
control statements.

If object modules from different system processors are to be bound to form one program object or load
module, the call library for each must be defined. This is accomplished by concatenating the additional
call libraries to the library defined on the SYSLIB DD statement. In the following example, a Fortran object
module and a COBOL object module are to be bound. The two call libraries are concatenated as follows:

//SYSLIB DD DSNAME=SYS1.VSF2FORT,DISP=SHR
// DD DSNAME=SYS1.COBLIB,DISP=SHR

Libraries typically are cataloged. No unit or volume information is needed.

Directing external references to a specific library
The LIBRARY control statement can be used to direct the binder to search a library other than that
specified in the SYSLIB DD statement. This method resolves only external references listed on the
LIBRARY statement, except that if the LIBRARY statement points to a library without naming any specific
symbols, that library can be used to resolve any symbols not listed in other LIBRARY statements. All other
unresolved external references are resolved from the library in the SYSLIB DD statement.

Input into the binder

56 z/OS: z/OS MVS Program Management: User's Guide and Reference

The LIBRARY statement can also be used to specify external references that should not be resolved from
the automatic call library. The LIBRARY statement specifies the duration of the unresolved condition:
either during the current binder job step, called restricted no-call; or during this or any subsequent binder
job step, called never-call.

Examples of each use of the LIBRARY statement follow. The syntax of the LIBRARY statement is shown in
“LIBRARY statement” on page 117.

Additional call libraries
If the additional libraries are intended to resolve specific references, the LIBRARY statement must
contain the ddname of a DD statement describing the library. The LIBRARY statement also contains,
in parentheses, the external references to be resolved from the library; that is, the names of the members
to be used from the library. If the unresolved external reference is not a member name in the specified
library, no attempt is made to resolve it from SYSLIB or LPA, and the reference remains unresolved unless
subsequently defined.

For example, two modules (DATE and TIME) from a system call library have been rewritten. The new
modules are to be tested with the calling modules before they replace the old modules. Because the
binder would otherwise search the system call library (which is needed for other modules), a LIBRARY
statement is used, as follows:

//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR
//TESTLIB DD DSNAME=USER.TESTLIB,DISP=SHR,...
//SYSLIN DD DSNAME=PROJECT.ACCTROUT,...
// DD *
 LIBRARY TESTLIB(DATE,TIME)
/*

Two external references, DATE and TIME, are resolved from the library described on the TESTLIB DD
statement. All other unresolved external references are resolved from the library described on the SYSLIB
DD statement.

Note: If a specified reference cannot be found in the designated library, it remains unresolved. No
attempt will be made to resolve it from SYSLIB.

Preventing external references from being resolved
You can use the LIBRARY statement to specify those external references in the output module for which
there is no library search during the current binder job step. To do this, specify the external references
in parentheses without specifying a ddname. The references remain unresolved, but the binder can mark
the module as executable, depending upon the value specified for the LET option.

For example, a program contains references to two large modules that are called from the automatic call
library. One of the modules has been tested and corrected; the other is tested in this job step. Rather than
execute the tested module again, the restricted no-call option is used to prevent automatic library call
from processing the module as follows:

// EXEC PGM=IEWBLINK,PARM=LET
//SYSLIB DD DSNAME=PROJECT.PVTPROG,DISP=SHR
⋮
//SYSLIN DD DSNAME=&&PAYROL,...
// DD *
 LIBRARY (OVERTIME)
/*

As a result, the external reference to OVERTIME is not resolved.

Never-call option
You can use the never-call option to specify external references that are not to be resolved by automatic
library call during this or any subsequent binder job step. To do this, put an asterisk before the external
references in parentheses. The references remain unresolved but the binder marks the module as
executable.

Input into the binder

Chapter 4. Defining input to the binder 57

For example, a certain part of a program is never executed, but it contains an external reference to a
large module (CITYTAX) which is no longer used by this program. The module is in a call library needed
to resolve other references. Rather than take up storage for a module that is never used, the never-call
option is specified, as follows:

// EXEC PGM=IEWBLINK,PARM=LET
//SYSLIB DD DSNAME=PROJECT.PVTPROG,DISP=SHR
⋮
//SYSLIN DD DSNAME=PROJECT.TAXROUT,DISP=OLD,...
// DD *
 LIBRARY *(CITYTAX)
/*

When program TAXROUT is bound, the external reference to CITYTAX is not resolved. If the module
is subsequently rebound, CITYTAX will remain unresolved unless it is bound with another module that
requires CITYTAX.

NCAL option: Negating the automatic library call
When the NCAL option is specified, no automatic library call occurs to resolve external references that
are unresolved after input processing. The NCAL option is similar to the restricted no-call option on
the LIBRARY statement, except that the NCAL option negates automatic library call for all unresolved
external references and restricted no-call negates automatic library call for selected unresolved external
references. With NCAL, all external references that are unresolved after input processing is finished
remain unresolved. The module is or is not marked executable depending on the value specified for the
LET option.

The NCAL option is a special processing parameter that is specified on the EXEC statement as described
in “CALL: Automatic library call option” on page 77.

Renaming
Binder renaming logic occurs when all possible name resolution has been performed on the original
names. It allows the conversion of long mixed case names from XOBJ or GOFF object modules to short
uppercase names and will redrive the autocall process. Renaming logic applies only to nonimported,
renameable function references that are still unresolved and consists of the following:

1. The RENAME control statement allows users to control the renaming of specific symbols, as they could
with the prelinker.

2. Standard C/C++ library functions will be renamed to the names appearing in the SCEELKED static bind
library. The mappings are those defined by module EDCRNLST. If the binder is not able to locate and
load this module, an informational message will be issued.

3. If UPCASE=YES is in effect, renaming will be performed approximately according to the rules used by
the prelinker.

See “UPCASE: UPCASE option” on page 99 for more information.

Input into the binder

58 z/OS: z/OS MVS Program Management: User's Guide and Reference

Chapter 5. Editing data within a program module

The binder can perform editing services either automatically or as directed by you with control
statements. These editing capabilities allow you to modify programs on a section basis, so you can modify
a section within a module without having to recompile the entire source program.

The editing capabilities let you modify either an entire section or external symbols within a section.
Sections can be deleted, replaced, or arranged in sequence; external symbols can be deleted or changed.
See “External symbols” on page 16 for an explanation of external symbols.

Any editing service is requested in reference to an input module. The resulting output program module
reflects the request; no actual change, deletion, or replacement is made to the input module. The
requested alterations are used to control binder processing, as shown in Figure 12 on page 59.

Note: This topic refers to binder processing. These concepts apply equally to linkage editor and batch
loader processing unless noted otherwise in Appendix A, “Using the linkage editor and batch loader,” on
page 157. The linkage editor and batch loader do not process program objects.

CSECTA

CSECT1

CSECT2

CSECT3

CSECT1

CSECT2

CSECT3

//SYSLMOD DD DSN=PROJECT.NEWLIB(MODA1A2),...
//MODATWO DD DSN=MODA2,...
//SYSLIN DD DSN=MODA1,...
// DD *
ENTRY CSECT3
REPLACE CSECT2(CSECTA)
INCLUDE MODATWO

.

.

.

Input Modules JCL and Control Statements Output Program Module

MODA1
MODA1A2

MODA2

.

.

.

Figure 12. Editing a module

Editing conventions
When you request editing services, you should follow certain conventions to ensure that the specified
modification is processed correctly.

These conventions concern the following items:

• Entry points for the new module
• Placement of control statements
• Identical old and new symbols.

Entry points
Each time the binder reprocesses a program module, the entry point for the output module must be
specified in one of the following three ways (in an order of precedence from the highest to the lowest):

• The ENTRY control statement or EP option specified on a SETOPT control statement.
• An entry point specified as an EP option in the PARM field of an EXEC statement or in a file processed as

a result of the OPTIONS option in the PARM field.
• Through an assembler- or compiler-produced END statement of an input object module if one is

present. If multiple entry point nominations are encountered, the first one is used. The entry point
specified on the END statement of one object module can be defined in a different object module if it is
specified as an external reference in the first module.

Editing sections

© Copyright IBM Corp. 1991, 2021 59

If none of the above is present, the entry point defaults to either CEESTART if DYNAM=DLL and CEESTART
exists, or the first byte of the first control section in the program. If the module contains multiple text
classes and an entry point is not specified, the results are not predictable.

The entry point assigned must be defined as an external name within the resulting program object or load
module.

Placement of control statements
Unless the -IMMED option is specified, the control statement (such as CHANGE or REPLACE) used to
specify an editing service must immediately precede either the module to be modified or the INCLUDE
statement that specifies the module. If an INCLUDE statement specifies several modules, the CHANGE
or REPLACE statement applies only to the first module included. If the -IMMED option is specified, the
control statement must be placed somewhere following the module to be modified or the INCLUDE
statement that specifies the module.

Identical old and new symbols
The same symbol should not appear as both an old external symbol and a new external symbol in one
binder run. If a section is replaced by another section with the same name, the binder handles this
automatically (see “Automatic replacement” on page 61 for more information).

Changing external symbols
You can change an external symbol to a new symbol while processing an input module. External
references and address constants within the module automatically refer to the new symbol. External
references from other modules to a changed external symbol must be changed with separate control
statements.

Both the old and the new symbols are specified on either a CHANGE control statement or a REPLACE
control statement. The use of the old symbol within the module determines whether the new symbol
becomes a section name, an entry name, or an external reference.

Using the CHANGE statement
The CHANGE control statement changes a section name, a common section name, an entry name, an
external or weak external reference, or a pseudoregister.

The CHANGE statement must immediately precede either the input module that contains the external
symbol to be changed, or the INCLUDE statement that specifies the input module. The scope of the
CHANGE statement is the immediately following module.

If a CHANGE statement appears in a data set included from an automatic call library and is not
immediately followed by an object module in the same data set, the request for the change is ignored.

See “CHANGE statement” on page 107 for the specific information on using the CHANGE control
statement.

Example of changing external symbols
In the following example, assume that SUBONE is defined as an external reference in the input program
module. A CHANGE statement is used to change the external reference to NEWMOD as shown in Figure
13 on page 61.

Editing sections

60 z/OS: z/OS MVS Program Management: User's Guide and Reference

Figure 13. Changing an external reference and an entry point

In the program module MAINROUT, every reference to SUBONE is changed to NEWMOD. The INCLUDE
statement specifies the ddname SYSLMOD, allowing the library to be used both as the input and the
output module library.

More than one change can be specified on the same control statement. If, in the same example, the entry
point is also to be changed, the two changes can be specified at once (see Figure 13 on page 61).

Because the main entry point name is changed from BEGIN to MAINEP, you must use the ENTRY
statement to change the library directory entry for the module to reflect the new name of the entry
point.

Replacing sections
An entire section can be replaced with a new section. Sections can be replaced either automatically or
with a REPLACE control statement. Automatic replacement acts upon all input modules; the REPLACE
statement acts only upon the module that follows it.

Note:

1. Any CSECT identification records (IDR) associated with a particular section are also replaced.
2. For assembler language programmers only: When some but not all sections of a separately

assembled module are to be replaced, the binder causes A-type address constants that refer to a
deleted symbol to be incorrectly resolved unless the entry name is at the same displacement from
the origin in both the old and the new section. If all sections of a separately assembled module are
replaced, no restrictions apply.

Automatic replacement
Sections are automatically replaced if both the old and the new section have the same name. The first
of the identically named sections processed by the binder is made a part of the output module. All
subsequent sections with that name are ignored; external references to identically named sections are
resolved with respect to the first one processed. Therefore, to cause automatic replacement, the new
section must have the same name as the section to be replaced, and must be processed before the old
section.

Editing sections

Chapter 5. Editing data within a program module 61

Attention: Automatic replacement applies to duplicate section names only. If duplicate entry
points exist in sections with different names, a REPLACE control statement must be used to
specify the entry point name.

Example 1: Object module with two sections
An object module contains two sections, READ and WRITE; member INOUT of library PROJECT.PVTLIB
also contains a section WRITE.

//SYSLMOD DD DSNAME=PROJECT.PVTLIB,DISP=OLD
//SYSLIN DD *

Object Deck for READ
Object Deck for WRITE

 ENTRY READIN
 INCLUDE SYSLMOD(INOUT)
 NAME INOUT(R)
/*

The output module contains the new READ section, the replacement WRITE section, and all remaining
sections from INOUT.

Example 2: Large program module with many sections
A large module named PAYROLL, originally written in COBOL, contains many sections. Two sections, FICA
and STATETAX, were recompiled and passed to the binder job step in the &&OBJECT data set. Then, by
including the &&OBJECT data set before the program module PAYROLL (a member of the program library
PROJECT.LIB001), the modified sections automatically replace the identically named sections. See Figure
14 on page 63.

Editing sections

62 z/OS: z/OS MVS Program Management: User's Guide and Reference

Figure 14. Automatic replacement of sections

The output module contains the modified FICA and STATETAX sections and the rest of the sections
from the old PAYROLL module. The main entry point is INIT1, and the output module is placed in
a library named PROJECT.LIB002. The COBOL automatic call library is used to resolve any external
references that might be unresolved after the SYSLIN data sets are processed. The new module is named
PAYROLL because PAYROLL is specified as the member name on the SYSLMOD DD statement and was not
overidden by a NAME control statement.

Using the REPLACE statement to replace sections and named common areas
The REPLACE statement is used to replace sections and named common areas (also called common
sections) by providing old and new section names. The name of the old section appears first, followed by
the name of the new section in parentheses.

The scope of the REPLACE statement is the immediately following module, unless the -IMMED option
is used. The REPLACE statement must precede either the input module that contains the section to be
replaced, or the INCLUDE statement that specifies the input module. The replacing section can be either
before or after the replaced section in the binder input. If a REPLACE statement appears in a data set
included from an automatic call library and is not immediately followed by an object module in the same
data set, the request is ignored.

Editing sections

Chapter 5. Editing data within a program module 63

If the -IMMED option is used with REPLACE, then the REPLACE operates against any sections that
have already been included as part of the current bind operation. The module being built is searched
immediately for a section name matching the specified old section name.

An external reference to the old section (or area) from within the same input module is resolved to the
new section. An external reference to the old section from any other module becomes an unresolved
external reference unless one of the following occurs:

• The external reference to the old section is changed to the new section with a separate CHANGE control
statement.

• The same entry name appears in the new section or in some other section in the binder input.

In the following example, the REPLACE statement is used to replace one section with another of a
different name. Assume that the old section SEARCH is in library member TBLESRCH, and that the new
section BINSRCH is in the data set &&OBJECT, which was passed from a previous step as shown in Figure
15 on page 64.

Figure 15. Replacing a section with the REPLACE control statement

The output module contains BINSRCH instead of SEARCH; any references to SEARCH within the module
refer to BINSRCH. Any external references to SEARCH from other modules will not be resolved to
BINSRCH.

See “REPLACE statement” on page 127 for more information on using the REPLACE statement.

Deleting external symbols
The REPLACE statement can be used to delete an external symbol. The external symbol can be a named
section, a named common area, an entry point, a strong or weak external reference, or a pseudoregister.
The REPLACE statement must immediately precede either the module in the input data set that contains
the external symbol to be deleted or the INCLUDE statement in the job stream that specifies the module.
Only one symbol appears on the REPLACE statement; the appropriate deletion is made depending on how
the symbol is defined in the module.

If the symbol is a section name, the entire section is deleted. The section name is deleted from the
external symbol dictionary only if no address constants refer to the name from within the same input

Editing sections

64 z/OS: z/OS MVS Program Management: User's Guide and Reference

module. If an address constant does refer to it, the section name is changed to an external reference. Any
CSECT identification data associated with that section is also deleted.

The preceding is also true of an entry name to be deleted. Any references to it from within the input
module cause the entry name to be changed to an external reference.

For external references and pseudoregisters, the symbol is deleted only if no RLD contains references to
the ESD entry to be deleted.

These editor-supplied external references, unless resolved with other input modules, cause the binder
to attempt to resolve them from the automatic call library. Also, the deletion of an external symbol in
an input module might cause external references from other input modules to be unresolved. Either
condition can cause the output module to be marked not executable.

If you delete a section that contains any unresolved external references, those references are removed
from the external symbol dictionary.

In the example shown in Figure 16 on page 65, the section CODER is deleted. If no address constants
refer to CODER from other sections in the module, the section name is also deleted. If address constants
refer to CODER, the name is retained as an external reference.

See “REPLACE statement” on page 127 for more information on using the REPLACE statement.

Figure 16. Deleting a section

Ordering sections or named common areas
The sequence of sections or named common areas in an output module can be specified by using the
ORDER control statement.

Normally, the order that sections are received during input processing are preserved in the resulting
module. Common areas are placed at the end. You can change the section order by coding one or more
ORDER control statements.

Individual sections or named common areas are arranged in the output module according to the
sequence in which they appear on the ORDER control statement. Multiple ORDER control statements can
be used in a job step. The sequence of the ORDER statements determines the sequence of the sections or
named common areas in the load module or program object.

Any sections or named common areas that are not specified on ORDER statements appear last in the
output load module in their original sequence. If a section or named common area is changed by a
CHANGE or REPLACE control statement, the new name must be used on the ORDER statement.

In the following example, ORDER statements are used to specify the sequence of five of the six sections
in an output module. A REPLACE statement is used to replace the old section, SESECTA, with the new
section, CSECTA, from the data set &&OBJECT, which was passed from a previous step. Assume that the
sections to be ordered are found in library member MAINROOT shown in Figure 17 on page 66.

Editing sections

Chapter 5. Editing data within a program module 65

Figure 17. Ordering sections

In the load module MAINROOT, the sections MAINEP, SEGMT1, SEG2, CSECTA, and CSECTB are
rearranged in the output load module according to the sequence specified in the ORDER statements.
A REPLACE statement is used to replace section SESECTA with section CSECTA from data set &&OBJECT,
which was passed from a previous step. The ORDER statement refers to the new section CSECTA. Section
LASTEP appears after the other sections in the output module, because it was not included in the ORDER
statement operands. The order control statement cannot be used to order parts.

Note that empty space is inserted in the module before CSECTB. This is done to ensure page alignment
for CSECTB as specified by the "(P)" operand on the ORDER control statement (this is discussed in
“Aligning sections or named common areas on page boundaries” on page 66).

See “ORDER statement” on page 122 for specific information on using the ORDER statement.

Aligning sections or named common areas on page boundaries
You can use either the ORDER statement or the PAGE statement to place a section or named common
area on a page boundary. This allows you to operate with a lower paging rate, making more efficient use of
real storage.

The section or common area to be aligned is named on either the PAGE statement or the ORDER
statement with the P operand. If any sections in the module are to be page aligned the module is loaded
on a page boundary. For multitext class program objects, a page-align request for a section will cause
each text element within the section to be aligned on a page boundary.

In the following example, the sections RAREUSE and MAINRT are aligned on page boundaries by PAGE
and ORDER control statements. Sections MAINRT, CSECTA, and SESECT1 are sequenced by the ORDER
control statement. Assume that each section is 3KB in length as shown in Figure 18 on page 67.

The binder places the sections MAINRT and RAREUSE on page boundaries. Sections MAINRT, CSECTA,
and SESECT1 are sequenced as specified in the ORDER statement. RAREUSE, while placed on a page
boundary, appears after the sections specified in the ORDER statement because it was not specified on
the ORDER statement.

Editing sections

66 z/OS: z/OS MVS Program Management: User's Guide and Reference

Figure 18. Aligning sections on page boundaries

For more information on using these control statements, see “ORDER statement” on page 122 and “PAGE
statement” on page 125.

Editing sections

Chapter 5. Editing data within a program module 67

Editing sections

68 z/OS: z/OS MVS Program Management: User's Guide and Reference

Chapter 6. Binder options reference

Guideline: This topic refers to binder processing. These concepts apply equally to linkage editor and
batch loader processing, unless noted otherwise in “Processing and attribute options reference” on page
162. The linkage editor and batch loader cannot process program objects.

This section describes the processing and attribute options that can be requested. Binder options are
specified in a number of ways. These are broadly classified as interfaces that pass option strings and
interfaces that have tailored option capabilities.

The following interfaces pass option strings:

• The PARM field of the JCL EXEC statement
• The first parameter passed to

– IEWBLINK
– IEWBLOAD
– IEWBLODI or IEWBLDGO

when using CALL, LINK, ATTACH, or XCTL from another program
• An options file identified by the OPTIONS option
• An options file specified by the DD name IEWPARMS
• The SETOPT control statement
• Installation option defaults
• The PARMS parameter of the IEWBIND FUNC=STARTD or FUNC=SETO call.

The following interfaces have tailored option capabilities:

• Arguments passed to the TSO LINK or LOADGO commands
• Arguments passed to the z/OS UNIX System Services c++, c89, cc, or ld commands
• The OPTIONS parameter of the IEWBIND FUNC=STARTD call
• The OPTION and OPTVAL parameters of the IEWBIND FUNC=SETO call.

Note: IEWBIND is fully documented in z/OS MVS Program Management: Advanced Facilities

Many options have the possible values YES and NO. These options usually have an associated option
that begins with N or NO. For example, you can specify MAP to produce a module map, and NOMAP to
suppress production of a module map. You can also specify the MAP option as MAP=YES or MAP(YES) and
MAP=NO or MAP(NO). Table 8 on page 72 shows the associated negative option if the option's values
are YES and NO.

The options you specify, through any means, when invoking the binder, always override similar data from
included modules. For example, if you specify PARM=RENT, the resultant module is marked "reentrant"
regardless of the reusability of any included modules.

If more than one output module is produced by a single binder instance, the options specified will apply
to all output modules, unless overridden by a SETOPT control statement, or IEWBIND FUNC=SETO call.

Specifying binder options
The content and usage of the options defined in this topic applies to all interfaces listed above. For the
syntax of the tailored option facilities, see the documentation for each of those interfaces. The syntax
discussed in the following subsection applies only to the options listed as option strings.

There are special rules that apply only to JCL EXEC statements that are discussed in “Special rules for JCL
EXEC statements” on page 70.

Binder options reference

© Copyright IBM Corp. 1991, 2021 69

The following rules apply to all option's strings:

• Each option has a two to eight character option name. The name can be entered in upper, lower, or
mixed case, but is always folded to upper case for processing.

• Options are separated from each other by one or more blanks or commas, or any combination of them.
• The same option may be specified more than once, or two alternative options (such as CALL and

NOCALL) can both be specified. In all cases, the last specification encountered is used. No attempt is
made to merge values from multiple option name occurrences.

• Some options have an optional or required value associated with the name. Where present, the option
value must immediately follow the option name with no intervening blanks or commas.

– Option values can be enclosed in parentheses or single quotation marks.
– The value is separated from the option name by a single equal sign, which can be omitted if the value

is enclosed in parentheses.
• There is no support for comments before, within, or following an option string.

The syntax of the PARM field is:

PARM=(option[,option],…)

 where option can be specified as

 {{option}
 {option(value[,value]…)}
 {option=value}
 {option=(value[,value]…)}}

You can use single quotations marks, rather than parentheses, to enclose the complete options string in
the PARM field. You can use parentheses outside a complete string that is delimited by single quotation
marks, as in PARM=('option,option'). You cannot use single quotation marks outside a complete string that
is delimited by parentheses. You can enclose values in parentheses.

Binder keywords are always converted to upper case. If you only specify one option, it need not be
enclosed in parentheses or single quotation marks.

The binder bridges the limitations imposed by the JCL interpreter by allowing additional freedom in the
format of the options string. While it makes every effort to resolve explicit (and implied) syntactical and
semantic combinations in the options string, its success is very much dependent on the validity of the
string specification. Caution and adherence to the options syntax is recommended when building the
options string. Binder warning or error messages will identify any problems detected while parsing the
options string.

Options that would otherwise be set on the PARM field can also be specified in the options file. This allows
you to specify a set of binder options that might otherwise exceed the MVS PARM string length limitation
of 100 bytes. It also allows you to create one or more binding profiles that can be included at bind
time. Options are processed in order, starting with the beginning of the parm string. When you specify
OPTIONS=ddname in the PARM field, the ddname is opened and the options in that file are processed.
Processing then continues with the option following OPTIONS= in the parm string.

Special rules for JCL EXEC statements
Binder options are specified in the PARM field of the EXEC statement and must adhere to the rules for JCL
statements. Keep in mind that:

• Commas cannot be used within the PARM value unless it is enclosed in parentheses or single quotation
marks.

• Blanks and equal signs cannot be used within the value unless they are within a string enclosed in
quotation marks.

Binder options reference

70 z/OS: z/OS MVS Program Management: User's Guide and Reference

• Nested parentheses are allowed only as complete subparameters separated by commas within a
parenthesized value.

Because commas or blanks are required to specify more than one binder option, the PARM string must
be enclosed in either single quotation marks or parentheses if multiple options are being passed to the
binder.

Because parentheses or an equal sign must be adjacent to an option name to specify an option value,
single quotation marks must be used if options with values are being passed to the binder.

One approach to these restrictions is to enclose the entire PARM= string in single quotation marks. If this
is done, the following additional JCL rules must be honored:

• Any single quotation marks within the string (such as the quotation marks typically needed for the PATH
parameter) must be doubled.

• If the string is continued beyond the initial JCL record, provide data through column 71 to ensure that
there is not a single quotation mark in that column. Next, continue the string in column 16 of the next
record (with // in columns 1 and 2 and blanks in column 3 through 15).

Another approach to these restrictions is to enclose the entire PARM= string in parentheses and
separate the options by commas with no intervening blanks. Individual options requiring an equal sign
or parentheses are then enclosed in single quotation marks, which the binder will remove. Using this
approach, the additional JCL rules are:

• If the string is continued beyond the initial JCL record, it can be broken after any comma at or before
column 71 and continued in any column from 4 through 16 of the next record (with // in columns 1 and
2).

• If the break must occur within a quoted string, the same rule listed above must be followed, data
through column 71 with continuation in column 16.

 16↓ 71↓
//BIND EXEC PGM=IEWL,
// PARM='linect=55,list(all),map,xref,options=optndd,wkspa
// ce=(400,10000)'

Figure 19. Example of special rules for JCL EXEC statements

 16↓ 71↓
//BIND EXEC PGM=IEWL,
// PARM=('linect=55','list(all)',map,xref,
// 'options=optndd','wkspace=(400,10000)')

Figure 20. Example of special rules for JCL EXEC statements

Special rules for options files
The OPTIONS option can specify a DD name for a sequential file, which includes a PDS member or
concatenation of sequential files. These files must contain 80-byte records. Only columns 1 through 72
are treated as containing options. Each record is treated as a separate option string. There is no support
for continuing individual options from one record to another.

The options in the options file are processed at the time the OPTIONS option is encountered, so think of it
as inserted at the point in the options string where the OPTIONS option is found.

DD name IEWPARMS is recognized as an option file with the same characteristics except that no
OPTIONS option is needed for IEWPARMS. IEWPARMS is processed at the end of the primary option
string.

Binder options
Table 8 on page 72 briefly describes all of the PARM options available to the binder. For options with
only yes and no values, the binder provides negative options. You can either specify the negative option or
set the primary option equal to NO. These options are listed in parentheses beneath the primary option.

Binder options reference

Chapter 6. Binder options reference 71

Descriptions are for the primary options. Table 8 on page 72 also lists the default values for each option
when using either IEWBLINK or IEWBLDGO.

Most options can be set on the PARM field of the EXEC statement or on the SETOPT control statement.
Options set from the PARM field are in effect for the entire job step, whereas options set via control
statements (MODE, SETCODE, SETOPT, SETSSI) are in effect only for the module in process. Options set
on control statements override settings from the PARM field.

Certain options are designated as "environmental" options and can only be specified on the PARM field
(they cannot be specified in the options file). Environmental options include:

• COMPAT
• EXITS
• LINECT
• MSGLEVEL
• OPTIONS
• PRINT
• SIZE
• TERM
• TRAP
• WKSPACE

The descriptions of all PARM options available to the binder are included in the table below.

Table 8. Summary of processing and attribute options

Option Default values Description

AC 0 Assigns an authorization code to the output
module, which determines whether the module can
use restricted system services.

ALIASES NO ALIASES(ALL) allows you to mark external symbols
as aliases when binding a module. The resultant
aliases are nonexecutable. They are simply used
for symbol resolution.

ALIGN2 (NOALIGN2) NO Specifies that a page specification causes the text
to be aligned on a 2 KB boundary within the
module. It has no effect on where the module is
loaded in virtual storage.

AMODE Default is the ESD
AMODE value.

Assigns an addressing mode (24, 31, 64, or ANY)
to the entry points in the output program module.
Specifying MIN causes the AMODE to be set to
the most restrictive AMODE value of all control
sections within the module. See “AMODE and
RMODE combinations” on page 31 for a detailed
description.

CALL (NCAL, NOCALL) YES Causes the binder to search program libraries to
resolve external references (automatic library call).

CASE UPPER Controls case sensitivity in names encountered in
modules, control ststements and options.

COMPAT MIN Specifies the compatibility level of the binder.

Binder options reference

72 z/OS: z/OS MVS Program Management: User's Guide and Reference

Table 8. Summary of processing and attribute options (continued)

Option Default values Description

COMPRESS AUTO Allows you to force compression or prevent
generation of an object that could not be
reprocessed on a level of the system earlier than
z/OS version 1 release 7.

DC (NODC) NO Causes a maximum record size of 1024 bytes to
be used for the output module. (This option is only
valid when creating load modules.)

DCBS (NODCBS) NO Allows you to specify the block size for the
SYSLMOD data set in the DCB parameter of the
SYSLMOD DD statement. (This option is only valid
when creating load modules.)

DYNAM NO Determines whether the resultant module is
enabled for dynamic binding. If enabled, the
module becomes a DLL module from which other
DLLs' imports can be resolved. Similarly, it is also
able to import symbols from other DLLs.

EDIT (NE) YES Saves modules in a format that allows them to be
rebound.

EP no default Specifies the external name to be used as the entry
point of the loaded program.

EXITS no default Specifies (one or more) exits are to be taken during
binder processing.

EXTATTR no default Specifies extended attributes for SYSLMOD when
saved in a z/OS UNIX file.

FETCHOPT NOPACK NOPRIME Specifies how a program object should be paged-
mapped (loaded) into virtual storage for execution.

FILL no default Specifies the character to be used to fill
uninitialized areas. FILL applies to program objects
only.

GID no default Specifies the group ID attribute to be set for the
SYSLMOD file.

HOBSET NO Specifies if the high order bit of each V-con is to
be set according to the AMODE of the target entry
point.

INFO NO Specifies that information about the compile dates
and PTF levels of sections within the main binder
module should be written to SYSPRINT.

LET (NOLET) 4 Specifies a severity code; the output module
is marked as not executable if a severity code
higher than the level you specified is found during
processing.

LINECT 60 Specifies the number of lines to be included on
each page of binder output listings. The minimum
supported value is 24.

Binder options reference

Chapter 6. Binder options reference 73

Table 8. Summary of processing and attribute options (continued)

Option Default values Description

LIST (NOLIST) OFF Controls the information included in the SYSPRINT
or SYSLOUT data set.

LISTPRIV OFF Lists any unnamed sections.

LONGPARM
(NOLONGPARM)

NO Indicates whether an APF authorized program can
be passed a parameter longer than 100 bytes from
a batch style invocation.

MAP (NOMAP) NO Produces a module map.

MAXBLK no default Specifies the maximum size of a text record in
a load module. This can avoid reblocking when
copying to a different device type at a later time.
(This option is only valid when creating load
modules.)

MODMAP NO Builds a map of the module contents in a separate
section as part of the module being bound.

MSGLEVEL 0 Limits the messages displayed to a given severity
level and higher.

NAME **GO Specifies a name to be used to identify the loaded
program to the system.

OL (NOOL) NO Brings the module into virtual storage only by using
a LOAD macro.

OPTIONS no default Embeds a data set containing binder options to be
used during the current processing.

OVLY (NOOVLY) NO Places the output program module in an overlay
structure.

PATHMODE Default allows file owner
permission for read,
write, and execute

Specifies pathmode to be used when saving a
module to a z/OS UNIX file.

PRINT (NOPRINT) YES Indicates that informational and diagnostic
messages are to be written to the SYSLOUT data
set for IEWBLDGO and SYSPRINT data set for
IEWBLINK.

RES (NORES) IEWBLDGO=YES
IEWBLINK=NO

Specifies whether or not the binder should
automatically search the link pack area queue
during automatic library call. For IEWBLDGO the
default is YES, and for IEWBLINK the default is NO.

REUS NONE Specifies whether the output program module will
be refreshable, reenterable, serially reusable or
nonreusable.

RMODE Default is the ESD
RMODE value.

Assigns the residence mode (24, ANY(31), 64,
SPLIT) to the output program module. Specifying
MIN causes the RMODE to be set to the most
restrictive RMODE value of all control sections
within the module segment. See “AMODE and
RMODE combinations” on page 31 for a detailed
description.

Binder options reference

74 z/OS: z/OS MVS Program Management: User's Guide and Reference

Table 8. Summary of processing and attribute options (continued)

Option Default values Description

RMODEX NONE Extensions to RMODE option. See “RMODEX:
Extended residence mode option” on page 93

SCTR NO Builds control blocks needed by the system
nucleus. Load module only.

SIGN NO Builds a digital signature for a program object.

SIZE no default Specifies the amount of virtual storage available for
binder processing and the output module buffer.
We do not recommend use of this option with the
binder.

SSI no default Specifies hexadecimal information to be placed
in the system status index; also see “SETSSI
statement” on page 130.

STORENX (NOSTORENX) NO Allows the binder to replace an executable copy of
a program module with a nonexecutable copy.

STRIPCL NO Allows the binder to remove unneeded classes
from a program object or load module.

STRIPSEC NO Allows the binder to remove unneeded sections
from a program object or load module.

SYMTRACE no default Request symbol resolution information to be
produced in SYSPRINT.

TERM (NOTERM) NO Copies the numbered binder error and warning
messages into a data set that has been defined by
a SYSTERM DD statement.

TEST (NOTEST) NO Specifies that the module is to contain symbol
tables in the format supported by TSO TEST.

TRAP ON Controls the extent of error recovery from program
checks and abends, and the techniques the binder
uses for it. The suboptions that can be specified are
ON, OFF and ABEND.

UID no default Specifies a user ID attribute to be set for the
SYSLMOD file.

UPCASE NO Indicates whether additional renaming is done
when symbols remain unresolved after the binder's
autocall process.

WKSPACE See “WKSPACE: Working
space specification
option” on page 99.

Specifies the maximum amount of virtual storage
available for binder processing both above and
below the 16 MB line.

XCAL (NOXCAL) NO Controls whether valid exclusive references
between overlay segments should be treated as a
warning (severity 4) or error (severity 8) condition.

XREF (NOXREF) NO Produces a cross-reference table of the output
module in the diagnostic output data set.

Binder options reference

Chapter 6. Binder options reference 75

AC: Authorization code option
You can assign an authorized program facility (APF) authorization code to an output program module. It
determines whether the module can use restricted system services and resources.

Guideline: Use the EXTATTR option in additional to the AC option to set the APF flag in a z/OS UNIX file.
For example:

AC=1, EXTATTR=APF

You can assign an authorization code on the PARM field by using the AC parameter as follows:

AC=n

The authorization code n must be an integer between 0 and 255. The authorization code assigned in the
PARM field is overridden by an authorization code assigned through the SETCODE control statement. If
you do not assign an authorization code, it is set to 0 in the output program module.

A nonzero authorization code has an effect only if the program resides in an APF-authorized library
defined by your system programmer. See z/OS MVS Programming: Authorized Assembler Services Guide
for more information on APF and system integrity.

ALIASES: ALIASES option
The ALIASES option requests directory entries be created for defined symbols in a module so that those
names can be used to resolve references during autocall. Because the aliases are only used for symbol
resolution and are not executable, they are called "hidden" aliases. You can code the ALIASES option in
the PARM field as follows:

ALIASES={NO | ALL}

Note:

1. Hidden aliases will not be created if NO is specified, or if the ALIASES option value is defaulted. Note
that the creation of hidden aliases is also dependent on the processing level of the binder. Be sure that
the COMPAT processing option is at least PM3 for the ALIASES option to take effect.

2. This processing option is intended to enable standard system support for symbol resolution similar to
that provided by C370LIB object libraries.

3. The DESERV macro has a HIDE parameter that can be used by an application program to control
whether hidden aliases are returned on a GET_ALL request. See the DESERV macro in z/OS DFSMS
Macro Instructions for Data Sets

ALIGN2: 2KB page alignment option
When binder page-aligns sections of text, a 4KB page size is assumed. For compatibility with older
environments that used 2KB pages, if you are binding program modules that will execute on hardware
that supports 2KB pages (not System/370 or System/390®), you can request 2KB page alignment by
coding the ALIGN2 option in the PARM field of the EXEC statement. There are advantages to using 2KB
alignment for modules that are executed on System/370 or System/390, although the system loader
loads the module on a 4KB page boundary regardless of the ALIGN2 specification. Program data areas
that are aligned are easier to read in a SNAP or ABEND dump and performance-critical assembler routines
might perform better if they are aligned on 32-or 64-byte boundaries. ALIGN2 can give a smaller module
without sacrificing these advantages.

{ALIGN2 | ALIGN2=NO | NOALIGN2}

Binder options reference

76 z/OS: z/OS MVS Program Management: User's Guide and Reference

ALIGN2=NO is the default value and can be specified with the keyword NOALIGN2.

AMODE: Addressing mode option
To assign the addressing mode for all the entry points into a program module (the main entry point, its
true aliases, and all the alternate entry points), you should code the AMODE parameter as follows:

AMODE={24 | 31 | 64 | ANY | MIN}

The addressing mode must be either 24, 31, 64, ANY, or MIN. When AMODE=MIN is coded, the binder
assigns one of the other four values to the output module; it selects the most restrictive mode of all
control sections within the output module. See “Addressing and residence modes” on page 29 for more
information about AMODE and RMODE.

The addressing mode assigned in the PARM field is overridden by an addressing mode assigned in the
MODE control statement. However, the values in the PARM field override the separate addressing modes
found in the ESD data for the control sections or private code where the entry points are located.

AMODE and RMODE values are specified independently, but the values are checked for conflicts before
output processing occurs. See “AMODE and RMODE combinations” on page 31 for information on AMODE
and RMODE compatibility and the setting of default values.

The AMODE keyword can also be specified as AMOD.

CALL: Automatic library call option
During input processing AUTOCALL control statements instruct the binder to resolve external references
against a specified library.

At the end of input processing the binder performs final autocall, where libraries specified on LIBRARY
control statements and the SYSLIB DD are used to resolve any remaining external references (while
AUTOCALL and LIBRARY control statements are optional, automatic library call requires that there is a
SYSLIB DD, otherwise a severity 8 error is issued). External references that are unresolved at the end of
final autocall are treated as severity 8 errors.

You can turn this processing off by coding the option NOCALL or NCAL in the PARM field as follows:

{NCAL | NOCALL}

When the no automatic library include option is specified, the binder does not search any library members
to resolve external references. Unresolved external references will be treated as severity 4 errors. If this
option is specified, you do not need to use the LIBRARY statement to negate the automatic library call for
selected external references, and you do not need to supply a SYSLIB DD statement.

Unless the LET option is also specified, other errors might still cause the module to be marked not
executable.

Note: If autocall processing is disabled, references to modules in the C run-time library will not be
resolved. For example, if the SMP/E link-edit utility entry PARM subentry is not left to use the default
value and NCAL is not explicitly listed in the specified value, the binder default of CALL=YES (or the binder
installation default) is used. This can cause frequent errors when using SMP/E to install products that use
the binder. See z/OS SMP/E Reference for more information about SMP/E utility entries and CALLLIBS.

CASE: Case control option
You can control the binder's sensitivity to case by coding the CASE option as follows:

CASE={UPPER | MIXED}

Binder options reference

Chapter 6. Binder options reference 77

The case can be either UPPER or MIXED. When CASE=MIXED is specified,

• The binder distinguishes between upper and lower case letters, treating two strings as different if their
cases do not match exactly.

• The binder does not convert any lowercase letters in names encountered in input modules, control
statements, and binder options.

Binder keywords are always converted to upper case.

CASE=UPPER is the default value, causing conversion of all lower case letters to upper case during binder
processing.

COMPAT: Binder level option
The COMPAT option allows you to specify the compatibility level of the binder. For instance, when binding
a module you can specify LKED which will partially alter the binder's behavior and its ultimate output as
if you had invoked the linkage editor. PM2 or PM3 would allow you to take advantage of the functions
supported by the newer version of program modules.

Awareness of the function provided by each option value allows you to anticipate the behavior of your
bound programs as you share them across systems that might not support the same functionality. The
functional differences are broadly discussed below for each option value.

If the output is directed to a PDS, the output module is saved as a load module regardless of the value of
COMPAT. COMPAT(LKED) will alter some of the processing.

If SYSLMOD is allocated to a PDSE or a z/OS UNIX file, the output is saved as a program object in the
format specified by the COMPAT option. If the user specified a COMPAT value that does not support the
contents of the module, binder will issue a level 12 message and fail the bind.

COMPAT={MIN | LKED | {CURRENT | CURR} | PM1 | PM2
 | {PM3 | OSV2R8 | OSV2R9 | OSV2R10 | ZOSV1R1 | ZOSV1R2}
 | {PM4 | ZOSV1R3 | ZOSV1R4} | {ZOSV1R5 | ZOSV1R6} | {ZOSV1R7}
 | {PM5 | ZOSV1R8 | ZOSV1R9} | {ZOSV1R10 | ZOSV1R11 | ZOSV1R12}
 | {ZOSV1R13}| { ZOSV2R1 | ZOSV2R2 | ZOSV2R3 | ZOSV2R4 | ZOSV2R5}

Or

COMPAT={MIN, XX), where XX can be any value listed previously except MIN, LKED, CURRENT, and
CURR.

CURRENT or CURR
Specifies that the output is to be as defined for the current level of the binder. For the level of Program
Management support described in this version of the manual, CURRENT is the same as ZOSV2R1.

ZOSV2R1 | ZOSV2R2 | ZOSV2R3 | ZOSV2R4 | ZOSV2R5
COMPAT=ZOSV2R1 is the minimum level that supports preserving all boundary alignments
specifications coming from ESD records. ALIGNT can be used to specify boundary alignments for
both load modules and program objects without requiring the use of COMPAT(ZOSV2R1).

ZOSV1R13
COMPAT=ZOSV1R13 is the minimum level that supports conditional sequential RLDs.

Binder options reference

78 z/OS: z/OS MVS Program Management: User's Guide and Reference

ZOSV1R10 | ZOSV1R11| ZOSV1R12
COMPAT=ZOSV1R10 is the minimum level that supports saving the timestamp from compiler IDRL
records in program objects. It also supports the RLD type corresponding to the assembler QY-con. The
QY-con is a special form of QCON representing the displacement in RXY type instructions.

PM5 | ZOSV1R8 | ZOSV1R9
COMPAT=PM5 is the minimum level that supports cross-segment references in relative immediate
instructions in program objects.

Caution: Programs bound with this option cannot be loaded, inspected, or reprocessed on any MVS
version prior to z/OS 1.8.

ZOSV1R7
COMPAT=ZOSV1R7 is the minimum level that supports relative/immediate instructions across
compile units or compression of non-program data.

ZOSV1R5 | ZOSVIR6
COMPAT=ZOSV1R5 is the minimum level that can be specified if RMODE 64 has been specified by a
compiler for deferred load data segments.

PM4 | ZOSV1R3 | ZOSV1R4
COMPAT=PM4 is the minimum level that can be specified if any of the following features are used:

• Input modules contain 8-byte adcons
• Any ESD record is AMODE 64
• Input contains symbol names longer than 1024, unless EDIT=NO
• A value of 64 is specified on the AMODE option or control statement

If COMPAT=PM4 and OVLY are both specified, COMPAT=PM4 is changed to PM1. PM4 supports all
PM3, PM2 and PM1 features.

PM3 | OSV2R8 | OSV2R9 | OSV2R10 | ZOSV1R1 | ZOSV1R2
In general, COMPAT=PM3 is the minimum level that can be specified if any of the following features
are used:

• Binding modules compiled using the XPLINK attribute
• DYNAM=DLL
• XOBJ format input to the binder without going through the Language Environment prelinker, or

rebinding modules containing input from such sources
• Hidden aliases (from ALIASES control statement)
• Support for both deferred load classes and merge classes with initial text (from GOFF format input

modules or data buffers passed via the binder API.)
• Language Environment-enabled programs

If COMPAT=PM3 and OVLY are both specified, COMPAT=PM3 is changed to PM1.

PM3 supports all PM2 and PM1 features.

PM2
In general, COMPAT=PM2 is the minimum level that can be specified if any of the following are used:

• User-defined classes passed in GOFF format input as well as certain other information supported
only in GOFF format

• Names (from input modules or created by control statements which cause renaming) that are longer
than 8 bytes.

• Use of RMODE=SPLIT

If OVLY is specified, COMPAT=PM2 is changed to PM1.

PM2 supports all PM1 features.

Binder options reference

Chapter 6. Binder options reference 79

PM1
This is the minimum level which supports binder program objects. In addition to old linkage editor
load module features, program object features supported here include:

• Device-independent record format
• Text length greater than 16 megabytes
• More than 32,767 external names

OVLY is supported, and will force PM1 to be used.

MIN
This is the default, and indicates that the binder should select the minimum PM level that supports
the features actually in use for the current bind.

LKED
Specifies that certain binder processing options are to work in a manner compatible with the linkage
editor. Specific processing affected by this specification includes:

• AMODE/RMODE—Where conflicts exist between the AMODE or RMODE of individual entry points
or sections and the value specified in the AMODE or RMODE option, the option specification will
prevail. No warning message will be issued and the return code remains unchanged.

• REUS—If a section is encountered in a module with a lower reusability than that specified on the
REUS option, the reusability of the module is automatically downgraded. An information message is
issued and the return code remains unchanged.

This should not be thought of as a level below PM1. Since LKED does not tell the binder what format to
use when saving a program object, the binder will behave according to MIN.

(MIN,XX)
The binder should select the minimum PM compatible level that supports the features in use for the
current bind, and the level must be equal to or larger than XX.

If COMPAT is not specified, the output format used by the binder will be the same as if you had specified
COMPAT=MIN.

COMPRESS: Compression option
Use this option to compress additional data that the binder stores with the executable program. This
has no effect on program size during execution, but can reduce the disk storage required to hold it. This
option allows you to control whether the binder will attempt compression. You might want to prohibit
compression in some cases.

COMPRESS={YES | NO | AUTO}

If compression is specified with no value, it will be treated as COMPRESS=YES.

When you specify COMPRESS=YES, the binder attempts to compress the data, unless compression is
prohibited by the COMPAT setting. If COMPAT is defaulted or set to MIN, the binder will treat it as if
COMPAT=ZOSV1R7 is specified. If COMPAT is specified as any lower value, the COMPRESS option is
ignored and a warning message is produced.

Specifying COMPRESS=YES will result in a warning unless COMPAT is specified or can be defaulted to be at
least zOSV1R7.

If AUTO is specified or defaulted to, compression will be done only if COMPAT=zOSV1R7 or higher or
some other characteristic of the program object forces the equivalent program object level.

COMPRESS=AUTO is the default value. If the binder decides to attempt compression when either
COMPRESS=AUTO or COMPRESS=YES are specified, it will determine if a savings of at least 4096 bytes of
storage on DASD is produced. If not, the data will be not be compressed and no error or warning message
is produced. However, informational message IEW2603I is produced for COMPRESS=YES.

Binder options reference

80 z/OS: z/OS MVS Program Management: User's Guide and Reference

Note: For load modules (output to a PDS) the COMPRESS option is ignored, and no error is produced.

DC: Downward compatible option
If you have a need to restrict the program library block size to 1024 bytes you can specify that a
maximum record size of 1024 bytes be used for the program library.

Specify the downward compatible attribute by coding DC in the PARM field.

{DC | DC=NO | NODC}

DC affects only load module contents, not program objects.

Specifying the DC attribute sets the block size for the program library data set to 1024 bytes with the
following exception. For an existing data set, if the current block size is greater than 1024 bytes, the load
module is written using a maximum record size of 1024 bytes; the block size in the DSCB entry for the
data set is not changed.

DC=NO is the default value and can also be specified with the keyword NODC.

DCBS option
The DCBS option allows you to specify the block size for the SYSLMOD data set in the DCB parameter of
the SYSLMOD DD statement. If the DCBS option is specified, the existing block size for the SYSLMOD data
set can be overridden.

{DCBS | DCBS=NO | NODCBS}

If the DCBS option is specified, but no block size value is provided in the SYSLMOD DD statement, the
binder uses the maximum record size for the device. If the DCBS option is not specified, but a block size
value is provided in the DCB parameter of the SYSLMOD DD statement, the block size value is ignored.

The minimum block size for the SYSLMOD data set is 256 bytes. For an existing data set, the minimum
block size must be less than the block size in the DSCB.

The specified block size is used unless it exceeds the maximum record size for the device or it is less than
the minimum block size. In those cases, the maximum record size or minimum block size is substituted,
respectively. If DCBS is specified, each CSECT starts a new block.

The following example shows the use of the DCBS option for an IBM 3380 Direct Access Storage device:

//LKED EXEC PGM=IEWBLINK,PARM='XREF,DCBS'
//SYSLMOD DD DSNAME=PROJECT.LOADMOD(TEST),DISP=(NEW,CATLG),
// DCB=(BLKSIZE=23440),...

As a result, the binder uses a 23440-byte block size for the program.

This option is only valid when processing load modules.

DCBS=NO is the default value and can also be specified with the keyword NODCBS.

DYNAM: DYNAM option
If DYNAM(DLL) is enabled and the module contains exported symbols, the binder will build the control
structures enabling the output module to be used as a DLL. The functions or variables exported by the
DLL can be imported by DLL applications. If DYNAM(DLL) is enabled, and the module contains symbols
eligible for dynamic resolution, and these symbols match symbols on IMPORT control statements, then
the binder will build the control structures enabling the output module to execute as a DLL application. A
DLL application can use functions or variables exported by DLLs.

You can specify the DYNAM option in the PARM field as follows:

Binder options reference

Chapter 6. Binder options reference 81

DYNAM={DLL | NO}

Note:

1. When DYNAM (DLL) is specified, a side file of IMPORT control statements might be generated by the
binder.

2. If you are using the batch interface of the binder, the IMPORT control statements are saved in the
data set specified in the SYSDEFSD ddname in your JCL. See “SYSDEFSD DD statement” on page 41.
If you are using the binder API, the side file is saved in the data set represented by the SIDEFILE
specification of the files parameter of the STARTDialog API. For more information, see z/OS MVS
Program Management: Advanced Facilities.

3. A module linked with the DYNAM(DLL) option will be saved in a PO3 format program object unless
you specify a higher COMPAT option or other features that force saving in an alternate format program
object.

4. The DYNAM option disables the RES option.
5. A module can be an exporter of functions or variables or both (a DLL). A module can also be a user of

exported functions or variables or both (a DLL application).
6. If a module is a DLL application and it is bound with DYNAM=NO and CALL=YES, and symbols

intended to be resolved dynamically have same-named symbols in autocall libraries, they will instead
be resolved statically to those symbols in the autocall libraries. If that module is later rebound
with DYNAM=DLL, those symbols already resolved statically will remain so; they will not be resolved
dynamically.

EDIT: Edit option
To prevent a module from being reprocessed by the binder or linkage editor, you can mark it as not-
editable. To assign the not-editable attribute, code NE or EDIT=NO in the PARM field.

{EDIT | NE | EDIT=NO}

EDIT is the default value.

If you use the not-editable attribute for a load module, you cannot request an EXPAND operation on the
output module. You can only use AMASPZAP 18 consecutive times.

If you use the not-editable attribute for a PM1 format program object, you cannot use the EXPAND control
statement.

If you use the not-editable attribute for a PM2 or higher format program object, there are the following
additional restrictions:

1. You cannot use the EXPAND control statement.
2. You cannot run AMASPZAP against it.
3. You cannot list the module with AMBLIST.
4. You canot process the module with the DLLRNAME utility.
5. You cannot copy the module to a PDS.
6. You cannot access the module using the binder API.
7. You cannot process the module with IEWTPORT or IEWBFDA.

A PM2 or higher format program object created with the not-editable option may require much less space
on DASD. The size of the loaded program and the time taken to load the program will not change.

If you use the not-editable attribute when creating a program object which would meet the limitations
of PM3 or lower format, except that it contains symbols longer than 1024 bytes, the object will be given

Binder options reference

82 z/OS: z/OS MVS Program Management: User's Guide and Reference

execution attributes equivalent to a PM3 object. This will allow it to be executed on down-level systems.
See the “COMPAT: Binder level option” on page 78 for additional information.

EP: Entry point option
The EP option allows you to specify an external name to be used as the entry point for the program.
The EP option is overridden by the ENTRY control statement. You can specify up to 1024 characters for
the name but the JCL PARM field is limited to 100 characters and an OPTIONS data set is limited to 80
characters per option, including the "EP=".

Specify the EP option on the PARM statement as follows:

EP=name

EXITS: Specify exits to be taken option
The EXITS option allows you to specify an exit(s) to be taken during binder processing. For more
information, see z/OS MVS Program Management: Advanced Facilities.

EXITS=(exit(module-name[,variable]),…)

where

exit
Specifies the user exit(s) to be selected. Choose one or more user exit names from INTFVAL,
MESSAGE, and SAVE.

module-name
Specifies the name of your loadable exit module

variable
Specifies an optional variable to be passed to your exit routine as follows:

For the INTFVAL exit you can specify an option string of up to 64 characters (if the string is enclosed in
quotation marks, the quotation marks are removed).

For the MESSAGE exit you can specify one numeric value that indicates the minimum severity of the
messages to be processed by the specified exit. For example, specify 4 to suppress processing of
informational messages.

EXTATTR: Specify extended attributes
The EXTATTR option allows you to set extended attributes for SYSLMOD when saved in a z/OS UNIX file.

Four extended attributes can be set:

1. APF authorization
2. PGMCNTL
3. NOSHAREAS
4. SHRLIB

EXTATTR={suboption | (suboption[,suboption]...)}

Where 'suboption' can be any of the following keywords:

APF | NOAPF | SHAREAS | NOSHAREAS | PGM | NOPGM | SHRLIB | NOSHRLIB

Binder options reference

Chapter 6. Binder options reference 83

Up to four suboptions can be given in a single EXTATTR specification. The last valid specification for each
of the four bits takes precedence. The defaults for the files are ordinarily NOAPF, SHAREAS, NOPGM and
NOSHRLIB. The binder will not attempt to change the system settings for any attribute for which the user
has not specified a value.

APF
Causes the APF authorized flag for the SYSLMOD file to be set.

NOAPF
Will cause the flag to be set off.

PGM
Will cause the program-controlled flag for the SYSLMOD file to be set.

NOPGM
Will cause the flag to be set off.

SHAREAS
Will cause the NOSHAREAS attribute flag for the SYSLMOD file to be turned off

NOSHAREAS
Means that the flag is set on

SHRLIB
Will cause the SHRLIB attribute for the SYSLMOD file to be turned on

NOSHRLIB
Will cause the SHRLIB attribute to be turned off

For further information on the extended attributes, refer to z/OS UNIX System Services Command
Reference.

FETCHOPT: Fetching mode option
The FETCHOPT option allows you to specify how a program object should be paged-mapped (loaded) into
virtual storage for execution. The syntax of the FETCHOPT option is:

FETCHOPT={(PACK,PRIME) | (NOPACK,PRIME) | (NOPACK,NOPRIME)}

PACK | NOPACK
Allows you to specify whether the program object is page-mapped into virtual storage on a page
or double word boundary. Specifying PACK causes the program object to be page-mapped into page-
aligned virtual storage and then moved to storage with double word alignment.

Specifying the NOPACK suboption of FETCHOPT will mark a program object as eligible to be page-
mapped into page-aligned virtual storage without a secondary move. Other characteristics of the
program, in conjunction with loading algorithms designed to optimize performance or storage usage,
may prevent this loading method from actually being used.

PRIME | NOPRIME
Allows you to specify if the program object should be completely read into virtual storage before
execution. When PRIME is coded, all of the program pages are read before program execution begins.
When NOPRIME is coded, program pages are not read until they are needed during execution.

You cannot specify the combination (PACK,NOPRIME). The default is (NOPACK,NOPRIME).

This option is only valid when processing program objects.

When a program object is loaded from a z/OS UNIX file, it is not page-mapped. NOPRIME is ignored and
the entire program is read in before program execution begins. Specifying the PACK option for a program
object loaded from a z/OS UNIX file results in doubleword alignment, but does not result in a secondary
move.

Binder options reference

84 z/OS: z/OS MVS Program Management: User's Guide and Reference

FILL: Fill character option
The FILL option lets you specify the character to be used to fill uninitialized areas of the program object.

FILL={byte | NONE}

The value byte (two hexadecimal digits) is used to specify a byte value that is used to fill uninitialized
areas of the program object. All of the hexadecimal (X'00'-X'FF') values are valid. For example, FILL=81
fills the area with X'81'.

The FILL option has no effect on storage added by the EXPAND statement. It also has no effect on load
modules and PM1-format program objects.

GID: Specify group ID
The GID option allows you to specify the Group ID attribute to be set for the SYSLMOD file:

GID=value

where

value
A string of up to 8 alphanumeric characters that represents a group name or numeric z/OS UNIX group
id. The characters will be folded to uppercase unless 'value' is enclosed in quotation marks.

HOBSET: Set high order bit option
The HOBSET option allows you to specify if the high order bit in each four byte V-type address constant is
set according to the AMODE of the target symbol.

HOBSET={NO | YES}

YES
Specifies the high order bit in each V-type address constant is set according to the AMODE of the
target entry point. For AMODE(31) or AMODE(ANY) targets, the high order bit is set on (B'1'). If the
target is marked AMODE(64), the address constant will not be altered. For AMODE(24), the high order
bit is set off.

Note: This operation is completely reversible. On rebinding, V-cons from included program objects
revert to their original state, unless HOBSET is specified again.

NO
Specifies the high order bit in each V-type address constant is not to be set according to the AMODE of
the target entry point.

NO is the default. The bit is set to off if HOBSET is not specified from any source.

Note: A module or element loaded below 16 MB might need to operate with AMODE(31) if it receives
control from another module or element loaded above 16 MB. This allows it to access the caller's data
areas.

INFO: Info option
When the INFO option is specified, the binder produces a report listing the PTF level for all binder
sections to which maintenance has been applied. This report appears at the end of the binder SYSPRINT
or SYSLOUT data set, prior to the message summary report.

INFO=NO is the default value and can also be specified with the keyword NOINFO.

Binder options reference

Chapter 6. Binder options reference 85

{INFO | INFO=NO | NOINFO}

LET: Let execute option
Ordinarily, the binder marks an output program module as nonexecutable when an error with a severity
level of 8 or higher is encountered. You can override this by specifying a different severity level using the
LET option. The binder then marks the module as not-executable only if an error is encountered whose
severity level is higher than what you specified.

Specify the LET option by coding the PARM field as follows:

{LET={0 | 4 | 8 | 12} | NOLET}

LET=4 is the default value. Coding the NOLET keyword will cause the binder to mark the output module as
nonexecutable when an error occurs with a severity level of 4 or higher. If LET is specified without a value,
LET(8) is assumed.

If LET=4 is specified, XCAL does not need to be specified.

LINECT: Line count option
The LINECT option lets you specify the number of lines to be included on each page of binder output
listings, including header lines and blank lines. The LINECT option is coded in the PARM field as follows:

LINECT={0 | 60 | n}

The value n can be any integer between 24 and 200, or 0. If you specify 0, there are no page breaks in the
output listing. The default value is LINECT=60.

LIST: Listing option
The LIST option allows you to control the type of information included in the SYSPRINT or SYSLOUT data
set. Consult Chapter 8, “Interpreting binder listings,” on page 131 for an explanation and examples of the
various kinds of information available. Code the LIST option in the PARM field as follows:

 {LIST | LIST={ALL | SUMMARY | STMT | NOIMP[ORT] | OFF} | NOLIST}

The LIST value can be one of the following:

ALL
Produces a listing of individual function calls, the load or save summary, control statements, and
messages. Messages IEW2308I and IEW2413I are issued only if LIST=ALL.

SUMMARY
Produces a listing of the load or save summary (including processing options and module attributes),
control statements, and messages.

STMT
Produces a listing of control statements and binder messages.

NOIMPORT | NOIMP
Produces the same output as SUMMARY except IMPORT control statements are not echoed in
message IEW2322I.

OFF
Produces a listing that contains only binder messages.

Binder options reference

86 z/OS: z/OS MVS Program Management: User's Guide and Reference

LIST=SUMMARY is the default value. The keyword LIST is equivalent to LIST=SUMMARY. NOLIST is
equivalent to LIST=OFF.

LONGPARM: Long parameter option
The LONGPARM option indicates whether the program supports a parameter longer than 100 bytes. This
applies mainly to programs that are invoked using a JCL EXEC statement or a z/OS UNIX EXECMVS
callable service. LONGPARM or LONGPARM=YES specifies that the program can accept a parameter string
of more than 100 bytes. In this case, an appropriate directory entry bit will be turned on. The system
checks for this attribute only when the program is being invoked with a parameter string of more than 100
bytes and the program is APF authorized. In this case, if the LONGPARM attribute is not set on, the system
fails the invocation.

Code the LONGPARM option as follows:

 {LONGPARM | LONGPARM=YES | LONGPARM=NO | NOLONGPARM}

The LONGPARM value can be one of the following:

LONGPARM=YES
LONGPARM

Specifies that the program can accept a parameter string of more than 100 bytes.
LONGPARM=NO
NOLONGPARM

This is the default value. Specifies that the program can not accept a parameter string of more than
100 bytes if it is APF authorized.

LISTPRIV: List unnamed sections option
The LISTPRIV option allows you to obtain a list of unnamed ('private code') sections. Unnamed sections
are sections that were input to the Binder with no name (that is, the name consists of all blanks). The
use of unnamed sections is not recommended (They may cause code growth on rebinding and may create
maintenance problems.) LISTPRIV is useful as a tool in locating such sections in your binds.

LISTPRIV={NO | YES | INFORM}

YES
If unnamed sections exist, a level 8 error message is generated, and a report that lists all the
unnamed sections and their origins is produced. If no unnamed sections exist, LISTPRIV has no
effect.

NO
No diagnostics or special reports is generated for unnamed sections.

NO is the default.

INFORM
If unnamed sections exist, an informational message is generated, and a report that lists all the
unnamed sections and their origins is produced.

MAP: Program module map option
The binder allows you to request a program module map by coding MAP in the PARM field as follows:

{MAP | MAP=NO | NOMAP}

Binder options reference

Chapter 6. Binder options reference 87

When the MAP option is specified, the binder produces a map of the program module in the diagnostic
data set SYSPRINT or SYSLOUT. In the case of an empty module, no program module map will be
generated. Figure 27 on page 134 contains an example of a program module map.

When a bind specifying the MAP option fails resulting in a not-executable (NX) module, a program module
map will be included in the binder listing.

MAP=NO is the default value and can also be specified with the keyword NOMAP.

MAXBLK: Maximum block size option
You can specify the maximum size of a text block within a load module by coding the MAXBLK option in
the PARM field as follows:

MAXBLK=n

The MAXBLK value n specifies the length of the text block in bytes and must be an integer between 256
and 32760. This option allows you to ensure that a load module can be copied to a device with a smaller
track size without reblocking.

If you specify value2 on the SIZE option but do not specify a MAXBLK value, MAXBLK will default to
one-half of value2. If you do not specify either value, MAXBLK defaults to the block size of the data set. If
you code the DC option, MAXBLK and SIZE are both overridden and MAXBLK is set to 1024 bytes.

We recommend that you allow the system to determine the block size for program libraries. However, if
you need to control the block size, we recommend that you use the MAXBLK option instead of the SIZE
option.

This option is only valid when binding load modules.

MODMAP: Module map option
You can build a map of the module contents in a separate section as part of the module being bound by
coding the MODMAP option in the PARM field as follows:

MODMAP={NO | LOAD | NOLOAD}

NO
The default value.

LOAD
builds the map in a loadable class. This is supported for both program objects (all formats) and load
modules.

NOLOAD
builds the map in a noload class. This is supported only for program objects.

MSGLEVEL: Message level option
The binder allows you to limit the messages displayed to only those of a specified severity level and
higher. You specify this level by coding the MSGLEVEL option in the PARM field as follows:

MSGLEVEL={0 | 4 | 8 | 12}

The MSGLEVEL value is a message severity level. The default value is MSGLEVEL=0.

Binder options reference

88 z/OS: z/OS MVS Program Management: User's Guide and Reference

NAME: NAME option
The NAME option allows you to specify a name to be used to identify a loaded program to the system. You
can specify the NAME option only when you are using IEWBLDGO.

You specify the NAME option on the PARM statement as follows:

NAME=name

The maximum length for the name is 8 characters.

The default value for this option is **GO.

OL: Only-loadable option
The only-loadable option lets you specify that a module can only be brought into virtual storage using a
LOAD macro instruction.

A module with the only-loadable attribute must be entered with a branch instruction or a CALL
macro instruction. If an attempt is made to enter the module with a LINK, XCTL, or ATTACH macro
instruction, the program making the attempt is terminated abnormally by the control program. (See z/OS
MVS Programming: Assembler Services Guide for information on the LINK, XCTL, and ATTACH macro
instructions.)

You specify the only-loadable option in the PARM field as follows:

{OL | OL=NO | NOOL}

OL=NO is the default value and can also be specified with the keyword NOOL.

OPTIONS: Options option
Instead of providing all processing options in the PARM field, you can create a data set containing the
options. You specify the ddname of the data set by coding the OPTIONS option in the PARM field as
follows:

OPTIONS=ddname

ddname identifies a sequential data set of blocked or unblocked 80-byte records. Options are specified
just as they are in the PARM field, separated by commas. Option records cannot be continued. A blank
outside of a quoted string ends processing of options in that record.

The options data set can contain multiple records with individual parameter sets. It cannot contain the
OPTIONS option or any of the Environmental options (see Table 8 on page 72. Blank records are ignored.
See “Options data set” on page 38 for information on coding the DD statement that defines the options
data set.

Tip: The options file does not replace the options string, but instead treats it as if the file was inserted into
the options string at the point where the OPTIONS option appears.

OVLY: Overlay option
The OVLY option allows you to create a program module in overlay format. A program with the overlay
attribute is placed in an overlay structure as directed by binder OVERLAY control statements. The program
module cannot be refreshed, reenterable, or serially reusable. AMODE(24) and RMODE(24) are the only
valid addressing and residence options.

Binder options reference

Chapter 6. Binder options reference 89

If the overlay attribute is specified and no OVERLAY control statements are found in the binder input, the
attribute is ignored.

The overlay attribute must be specified for overlay processing. If this attribute is omitted, the OVERLAY
and INSERT statements are not considered valid, and the module is not put into overlay structure.

You specify the overlay attribute by coding OVLY in the PARM field as follows:

{OVLY | OVLY=NO | NOOVLY}

See Appendix D, “Designing and specifying overlay programs,” on page 191, for information on the design
and specification of an overlay structure.

OVLY=NO is the default value and can also be specified with the keyword NOOVLY.

Note: The OVLY option overrides any specification of the COMPAT option. That is, if you specify the
options COMPAT (COMPAT=any value) and OVLY at the same time, OVLY prevails and the module is saved
in PM1 format if the SYSLMOD data set is a PDSE. Otherwise it is saved as a load module in a PDS. For
more information on COMPAT, see “COMPAT: Binder level option” on page 78.

PATHMODE: Set z/OS UNIX file access attributes for SYSLMOD
PATHMODE is used to set z/OS UNIX files attributes for SYSLMOD.

PATHMODE=oct1,oct2,oct3,oct4

oct1,oct2,oct3,oct4
Where oct1 through oct4 are each are specified as an octal digit (0-7) separated by commas. Each
of these digits specifies execution values that override the permission bits set by the PATHMODE
parameter in the JCL for SYSLMOD.

The octal digit is interpreted as three bits (e.g. 5 is 101) and used as follows:

oct1
1..

Set user ID of process to user ID of file owner when the program is executed
.1.

Set group ID of process to group ID of file owner when the program is executed
..1

Keep loaded executable in storage

oct2
1..

Owner permission to read file
.1.

Owner permission to write file
..1

Owner permission to execute file

oct3
1..

Group permission to read file
.1.

Group permission to write file
..1

Group permission to execute file

Binder options reference

90 z/OS: z/OS MVS Program Management: User's Guide and Reference

oct4
1..

Other permission to read file
.1.

Other permission to write file
..1

Other permission to execute file

z/OS MVS JCL Reference and z/OS UNIX System Services Command Reference have more information
on PATHMODE file access attributes.

PRINT: Diagnostic messages option
Informational and diagnostic messages are normally written to the SYSLOUT or SYSPRINT data sets. You
can turn off this feature by coding NOPRINT in the PARM field.

{PRINT | NOPRINT}

If NOPRINT is coded, the SYSLOUT and SYSPRINT data sets are not opened.

RES: Search link pack area option
During IEWBLDGO processing, the binder automatically searches the link pack area queue before
searching the SYSLIB data set. You can prevent this by coding the NORES option in the PARM field.

{RES | NORES}

NORES is the default for the bind and save entry point (IEWBLINK or its aliases). RES is the default for the
batch load entry points.

REUS: Reusability options
The REUS option allows you to specify how a program can be reused. (Reusability means that the same
copy of a program module can be used by more than one task either concurrently or one after another.)

Note that the value of the REUS option always overrides the reusability of any included load modules or
program objects.

The syntax of the REUS option is as follows:

REUS={NONE | SERIAL | RENT | REFR}

The reusability values are:

NONE
The module cannot be reused. A new copy must be brought into virtual storage for each use. NONE is
the default value.

SERIAL
The module is serially reusable. It can only be executed by one task at a time; when one task has
finished executing it another task can begin. A serially reusable module can modify its own code, but
when it is reexecuted it must initialize itself or restore any instructions or data that have been altered.

RENT
The module is reenterable. It can be executed by more than one task at a time. A task can begin
executing it before a previous task has completed execution. A reenterable module is ordinarily
expected not to modify its own code. In some cases, MVS protects the reentrant module's virtual
storage so that it cannot be modified except by a program running in key 0. These cases include

Binder options reference

Chapter 6. Binder options reference 91

programs which the system treats as having been loaded from an authorized library, and also
programs running under UNIX unless a debugging environment has been specified.

Reenterable modules are also serially reusable.

REFR
The module is refreshable. It can be replaced by a new copy during execution without changing the
sequence or results of processing. A refreshable module cannot be modified during execution.

A module can only be refreshable if all the control sections within it are refreshable. The refreshable
attribute is negated if any input modules are not refreshable. Refreshable modules are also
reenterable and serially reusable.

The refreshable attribute can be specified for any nonmodifiable module.

If REFRPROT has been specified on the SETPROG command or in parmlib member PROGxx, the
module is protected from modification by placing it in key 0, non-fetch protected storage, and
page protecting the whole pages. Note that debuggers, such as TSO TEST and UNIX debugging
environments, will override REFRPROT protection for particular TCBs so that they can modify module
storage in order to set breakpoints.

Alternatively, you can code a REUS option as a single keyword without a value (REUS, NOREUS, RENT,
NORENT, REFR, NOREFR). For example:

//LKED EXEC PGM=IEWBLINK,PARM='RENT,…'

REUS used as a single keyword is equivalent to REUS=SERIAL. NOREUS used as a single keyword is
equivalent to REUS=NONE. This alternative form is supported only for backward compatibility. The most
restrictive positive specification is used to set the reusability attribute. For example, specifying REFR has
the same effect as specifying REUS (REFR) and the module is marked as refreshable, reenterable, and
(serially) reusable.

If the PARM string contains both formats, the REUS(value) instance will override any reusability options
specified without values.

The binder only stores the attribute in the directory entry. It does not check whether the module is
actually reenterable or serially reusable. If the module is incorrectly marked as reenterable or reusable,
execution results are unpredictable; for example, a protection exception might occur or the program
might use another task's data.

RMODE: Residence mode option
To assign the residence mode for all the entry points into a program module, you can code the RMODE
parameter as follows:

RMODE=(rmode [,scope])

Or

RMODE(SPLIT)

The residence mode assigned in the PARM field is overridden by a residence mode assigned in the MODE
control statement, but overrides the accumulated residence mode found in the ESD data for the control
sections or private code in the input.

AMODE and RMODE values are specified independently, but checked for conflicts before output
processing occurs. See “AMODE and RMODE combinations” on page 31 for information on AMODE and
RMODE compatibility and the setting of default values.

The rmode can be MIN, 24, ANY, 31, or 64.

Binder options reference

92 z/OS: z/OS MVS Program Management: User's Guide and Reference

In addition to the rmode, you may optionally specify a scope. The scope determines how the residence
mode value is applied. The allowable scope values are:
INITIAL

The residence mode value is applied to all initial load classes in all segments.

When RMODE is specified, the default scope value is INITIAL.

COMPAT
The residence mode value is applied only to the initial load classes comprising the first segment (the
one that contains the main entry point).

When RMODE is unspecified, the default scope value is the same as RMODE(MIN,COMPAT).

Notes:

1. The scope may not be specified with RMODE(SPLIT).
2. When RMODEX is 64TRUE, SPLIT is the only valid value of RMODE. All other values will be ignored.

RMODE(SPLIT) specifies the program text (class B_TEXT) can be split into two class segments according
to the RMODE of each section. Rules for splitting the text are:

• If RMODE(SPLIT) is specified, the B_TEXT class of each included module is distributed between the two
class segments according to the RMODE of each section contained in the module.

• If RMODE(SPLIT) is not specified, either through the binder execution parameter or a control statement,
included text in classes B_TEXT, B_TEXT24 and B_TEXT31 are combined into B_TEXT class and loaded
into memory using the existing RMODE resolution rules. B_TEXT64 is combined into B_TEXT when
RMODE=64 or RMODEX is specified.

• If the OVLY option is specified, RMODE is reset to 24 and the split module is not produced.
• If RMODE(SPLIT) is specified, consider the HOBSET option. If you specify HOBSET, the high order bit of

each V-type address is set according to the AMODE of the called entry point.

When an RMODE(SPLIT) module is loaded, the LOAD service returns a length of zero. For additional
information on multiple segment modules, see “Creating a program object” on page 21. When you use
LOAD, the CSVQUERY service should be used with the OUTXTLST parameter to obtain information about
the address (load point) and length of each program segment. See CSVQUERY in z/OS MVS Programming:
Assembler Services Guide for more information.

The keyword RMODE can be specified as RMOD for options strings (such as IEWL PARM or options files).

RMODEX: Extended residence mode option
The primary purpose of RMODEX is to change the binder behavior for RMODE(64) ESDs. RMODE(64)
ESDs are treated as if they were RMODE(31) (RMODE(ANY)) ESDs, unless either RMODEX=64TRUE or
RMODE=64 is specified.

The RMODEX parameter syntax is as follows:

RMODEX={ NO | 64TRUE | (64TRUE,R1:R2)}

NO
Turn off RMODEX. RMODE(64) ESDs are treated as if they were RMODE(31) ESDs, unless RMODE=64
is specified. NO is the default value and can also be specified with the keyword NORMODEX .

64TRUE
The binder will honor RMODE(64) ESDs.

R1:R2
This defines an optional RMODE mapping. This might be necessary, as the binder support of multipart
programs currently allows at most two initial load segments. Thus, when RMODEX=64TRUE is
specified and RMODE=rmode (rmode=24, ANY(31) or 64) is not, and all three kinds of RMODE ESDs
(24, ANY(31), 64) are present in the module, then one kind of RMODE ESDs must be mapped to

Binder options reference

Chapter 6. Binder options reference 93

another. By default, the binder will map RMODE(64) ESDs to RMODE(31) ESDs in this case. This can
be overridden by an optional mapping specification following the 64TRUE keyword.

Two mappings are supported:

1. RMODEX=(64TRUE,64:31), which means RMODE(64) ESDs are mapped to RMODE(31). This is the
default behavior for RMODEX=64TRUE.

2. RMODEX=(64TRUE,31:24), which means RMODE(31) ESDs are mapped to RMODE(24).

Notes:

1. With RMODEX=64TRUE specified, a mapping is only performed when all three kinds of RMODE
ESDs are present, regardless of whether or not a mapping was specified.

2. When RMODEX is specifed, residence modes of entry points are still determined by the binder
RMODE option, if specified. If it is not specified, residence modes of entry points are determined
according to the RMODE where the entry point resides.

3. When the simple format RMODE=rmode is specified, an RMODE mapping is not necessary, as only
one initial load segment will be built. But when RMODE=(rmode,COMPAT) or RMODE=SPLIT is
specified, an RMODE mapping is necessary, as two segments might be built.

4. When neither RMODEX=64TRUE nor RMODE=64 are specified and the program is stored as a load
module in a PDS, any RMODE=64 ESDs are permanently changed to RMODE=31 (ANY). Message
IEW2618I will also be issued.

SCTR: Scatter load option
SCTR causes special control tables to be built in the output load module. This information is used by the
system when loading the nucleus. Otherwise the tables are ignored. The option applies only when saving
a load module.

The syntax of the SCTR option is as follows:

SCTR={NO | YES}

The default is NO.

SCTR or SCTR=YES must be specified when building a module that represents the system nucleus.

SIGN: SIGN option
By specifying the SIGN option, you can build a digital signature for a program object.

The syntax of the SIGN option is as follows:

SIGN={NO | YES}

The default is NO.

If SIGN or SIGN=YES is specified, the binder builds a digital signature in the program object. The bound
program object contains a signature information structure that the loader (or other programs) can use to
determine the signature validity. This signature is used by the system only if the program object resides
in a PDSE. To build the signature, the binder must have access to an appropriate SAF (RACF®) key ring or
to a z/OS PKCS #11 token. For further information, see z/OS Security Server RACF Security Administrator's
Guide.

SIZE: Space specification option
The SIZE option allows you to specify the amount of space available for processing load modules. You
can specify the amount of virtual storage the binder can use and the size of the load module buffers. If

Binder options reference

94 z/OS: z/OS MVS Program Management: User's Guide and Reference

you specify SIZE when you bind program objects, the value2 subparameter is ignored. Also, if you specify
WKSPACE, the first subparameter of WKSPACE overrides the first subparameter of SIZE.

Note: We recommend that you do not use the SIZE option. Block size for load modules should be
specified with the MAXBLK option (see “MAXBLK: Maximum block size option” on page 88), and
workspace can be allocated with the WKSPACE option (see “WKSPACE: Working space specification
option” on page 99).

The syntax of the SIZE option is:

SIZE={value1[K] | ([value1[K],value2[K])}

value1
Specifies the maximum number of bytes of available virtual storage. For the binder, the minimum
value is 16 KB (16384) and the maximum value is 16000 KB (16 MB).

value2
Specifies the number of bytes of storage to be allocated for the load module buffer. For the binder, the
minimum value is 512 and the maximum value is 65520 (approximately 64KB).

The binder only uses this value to determine the block size of the load module. If MAXBLK is not
specified, the block size is set to half of value2.

When coded in the PARM field, value1 and value2 parameters are enclosed in parentheses. For example:

//LKED EXEC PGM=IEWBLINK,PARM='SIZE=(2048K,32K),...'

Both value1 and value2 can be expressed as integers specifying the number of bytes of virtual storage or
as nK, where "n" represents the number of 1KB (1024) of virtual storage.

The binder provides default values for the SIZE option. The default values are used if you do not specify
any values, or if you specify one or more of the values incorrectly. These defaults should be adequate for
most binds, relieving you from needing to specify the SIZE option.

SSI: System status index option
You can specify hexadecimal information to be placed in the system status index by coding the SSI option
in the PARM field as follows:

SSI=ssi-info

ssi-info is a hexadecimal value of exactly 8 digits. This is placed in the system status index of the output
module library directory entry.

If a SETSSI control statement has been coded, the value specified there overrides any value set by this
option.

STORENX: Store not-executable module
Specifies the conditions under which the binder is to store a non-executable program module. The syntax
of the STORENX option is as follows:

STORENX={YES | NOREPLACE | NEVER}

STORENX=YES
STORENX

When specified, a new module replaces an existing module of the same name regardless of the
executable status of either module. If the NAME statement is provided, the replace option (R) must
have been coded. STORENX=YES can also be specified as STORENX.

Binder options reference

Chapter 6. Binder options reference 95

STORENX=NOREPLACE
STORENX=NO
NOSTORENX

Is the default value and specifies that the binder will not replace an executable module in a program
library with a not-executable version. STORENX=NOREPLACE can also be specified as STORENX=NO or
NOSTORENX.

STORENX=NEVER
Specifies that the system will prevent the save of a non-executable module even when no module
with the same name previously existed in the target library.

STRIPCL: Remove class option
The STRIPCL option allows you to remove unneeded classes from a program object or load module. For a
class to be eligible for removal, in addition to having the "removable" attribute:

• It must not be a binder-owned class (those whose name start with "B_")
• It must not contain any RLD entries

{STRIPCL=YES | NO}

STRIPCL=YES
Specifies that all classes with removable class attribute are to be removed. The removable attribute
may be specified in GOFF files passed to the binder, and is preserved in the program object,
associated with particular classes. The normal usage of this is expected to be for classes composed of
debug data.

If STRIPCL is specified without a value, it is treated as STRIPCL=YES.

STRIPCL=NO
Is the default value and specifies that classes with the removable class attribute are to be retained.

STRIPSEC: Remove section option
The STRIPSEC option allows you to remove unneeded sections from a program object or load module.

STRIPSEC={PRIV|YES | NO}

STRIPSEC=PRIV
Specifies that unreferenced unnamed sections are to be removed. Sections removed by
STRIPSEC=YES are always a superset of STRIPSEC=PRIV. See the note below for more information
concerning unreferenced sections.

STRIPSEC=YES
Specifies that unreferenced and unreferenced unnamed sections are to be removed. Sections
removed by STRIPSEC=PRIV are always a subset of STRIPSEC=YES. See the note below for more
information concerning unreferenced sections.

If STRIPSEC is specified without a value, it is treated as STRIPSEC=YES.

STRIPSEC=NO
Is the default value and specifies that unreferenced sections are not to be removed.

Note: For a section to be considered unreferenced, it must:

• Contain no symbols that are referenced by an ESD
• Contain neither an entry point nor an alias
• Contain no exported symbols
• Not be the target of a control statement

Binder options reference

96 z/OS: z/OS MVS Program Management: User's Guide and Reference

SYMTRACE: Symbol resolution tracing
The SYMTRACE option requests the binder to report some symbol resolution information.

Code the SYMTRACE option as follows:

 {SYMTRACE=symbol | SYMTRACE(symbol)}

This option requests symbol resolution information to be produced in SYSPRINT. Messages include:

• The traced symbol may be resolved dynamically (from a DLL):

– IMPORT information encountered: IEW2336I, IEW2337I.
– IMPORT used for resolution: IEW2423I, IEW2424I.

• The traced symbol is referenced in a section:

– Section comes from a data set or DDname: IEW2417I.
– Section comes from a z/OS UNIX archive member or file: IEW2418I.

• The traced symbol is defined in a section:

– Section comes from a data set or DDname: IEW2419I.
– Section comes from a z/OS UNIX archive member or file: IEW2420I.

If origination information is available, the above messages are accompanied by one of these:

– Origination section comes from a data set or DDname: IEW2421I.
– Origination section comes from a z/OS UNIX archive member or file: IEW2422I.

• The traced symbol is not yet resolved so will be searched for using AUTOCALL:

– Searching a data set or DDname: IEW2546I.
– Searching a z/OS UNIX archive library or directory: IEW2547I.

If the traced symbol is not found in all explicitly included modules and libraries, no symbol trace message
is issued.

When the binder is required to print a message containing a variable (symbol) with a length greater than
1024 bytes, the message prints only the first 1024 bytes of the variable (symbol). Refer to “The message
summary report” on page 145 for this limitation.

Note: By default, SYMTRACE is off. After it is turned on, you can turn it off again by specifying
SYMTRACE=".

If compilers have mangled symbol names, the mangled names should be used for the SYMTRACE option.

As symbol resolution is case sensitive, to trace a case-sensitive symbol name, either set the CASE option
to MIXED or specify the symbol name in single-quotes.

Modifying a symbol name by any of the following means does not have any affect on the name of the
symbol be traced:

1. Changed by a CHANGE or REPLACE control statement or corresponding ALTERW API call; renamed by
a RENAME control statement or corresponding RENAME API call, or renamed according to other rules
described in “Renaming” on page 58.

2. Changed by the interface validation user exit, action code 4.

TERM: Alternate output option
You can request that the numbered error and warning messages be written to the data set defined by a
SYSTERM DD statement by coding TERM in the PARM field.

Binder options reference

Chapter 6. Binder options reference 97

{TERM | TERM=NO | NOTERM}

When the TERM option is specified, a SYSTERM DD statement must be provided. If it is not, the TERM
option is ignored and messages are written only to the SYSPRINT or SYSLOUT data set.

Output specified by the TERM option supplements printed diagnostic information. When TERM is used,
binder error/warning messages appear in both output data sets.

TERM=NO is the default value and can also be specified with the keyword NOTERM.

TEST: Test option
A program with the test attribute contains information about internal symbols in a form that can be
accessed with the TSO TEST command. Symbol tables to be used by the TSO TEST command should be
included in the input to the binder, which will place them in the output module. If the test attribute is
not specified, any symbol tables in the input are ignored by the binder and are not placed in the output
module. If the test attribute is specified, and no symbol table input is received, the output load module
will not contain symbol tables to be used by the TSO TEST command.

Specifying the TEST option is not useful unless you are going to use the TSO TEST command on the
program. The symbol tables in the program are ignored except when using the TSO TEST command.

You assign the test attribute by coding TEST in the PARM field.

{TEST | TEST=NO | NOTEST}

The TEST option is only valid for program modules that are stored in a program library for later execution.

TEST=NO is the default option and can also be specified with the keyword NOTEST.

TRAP: Error recovery
Specifying the TRAP option lets you control error trapping.

This option can be specified only in the following ways:

• The PARM string when the binder is invoked from JCL.
• The first parameter in the parameter list passed when calling the binder from another program

(IEWBLINK, IEWBLOAD, IEWBLODI, IDWBLDGO).
• The IEWBIND API FUNC=STARTD OPTIONS= or PARMS= parameters.

{TRAP=ON | ABEND | OFF}

ON
Causes the binder to establish both an ESTAE and an ESPIE exit. This will trap all abends and program
checks that occur while the binder is in control. A key aspect is that parameter validation done by the
binder API will return the documented results even if some program in the binder calling sequence
has a program check exit.

ABEND
The binder will establish an ESTAE exit but not an ESPIE exit. This will trap all abends, but program
checks will be caught by the binder only if no program in the binder calling sequence has an ESPIE
exit.

Note:

Binder options reference

98 z/OS: z/OS MVS Program Management: User's Guide and Reference

1. Especially with the API interface, program checks may occur during binder validation of its input.
The binder will normally recover from those and convert them into return codes. It will be unable
to do that if TRAP=ABEND was specified and some calling program has an ESPIE exit.

2. A Language Environment will normally include an ESPIE exit, so Language Environment-enabled
programs calling the binder should not use TRAP=ABEND unless they are being debugged or have
made special provision for this situation.

3. Prior to z/OS 1.5 there was no TRAP option, but the binder behavior matched what is now defined
for TRAP=ABEND.

OFF
Prevents the binder from establishing any ESTAE or ESPIE exit. This will allow callers of the binder to
trap all abends and program checks.

Note: Many data set related ABENDs are passed directly by DFSMS to binder routines doing
I/O. These do not go through binder ESTAE processing and will continue to be caught even with
TRAP=OFF.

UID: Specify user ID
The UID option allows you to specify the User ID attribute to be set for the SYSLMOD file:

UID=value

where

value
A string of up to 8 alphanumeric characters that represents a user name (such as TSO logon ID) or a
numeric z/OS UNIX user id.

UPCASE: UPCASE option
This option indicates whether additional renaming should be done when symbols remain unresolved.
Unresolved function references that are marked as renameable and are not imported are set to uppercase
if they are eight characters or less in length. Also, underscore ('_') is mapped to '@' and names
beginning with IBM, CEE, or PLI have their respective prefixes changed to IB$, CE$, and PL$. After
the renaming process is complete, an attempt to resolve the symbols using the new names is made.
Traditional object modules do not support the renameable bit and thus symbols originating from them are
not affected by the UPCASE option.

The UPcase option provides binder function roughly equivalent to the prelinker UPCASE option.

The UPCASE option can be specified in the PARM field as follows:

{UPCASE | UPCASE=YES | UPCASE=NO | NOUPCASE}

Note: UPCASE is supported only for format 3 or higher program objects. This is expressed as
COMPAT=PM3 or equivalent, or higher. But when COMPAT=MIN is indicated, the binder does not force
PM3 or higher simply to satisfy UPCASE=YES.

WKSPACE: Working space specification option
The WKSPACE option allows you to specify the amount of virtual storage available to the binder during
processing.

The syntax of the WKSPACE option is:

WKSPACE=([value1][,value2])

Binder options reference

Chapter 6. Binder options reference 99

value1
The maximum amount of virtual storage below the 16 MB line, in units of 1KB, that is available for
binder processing.

value2
The maximum amount of virtual storage above the 16 MB line, in units of 1KB, that is available for
binder processing.

For example:

//LKED EXEC PGM=IEWBLINK,PARM='WKSPACE=(96,1024),...'

If value1 is not specified and the SIZE option has been specified, value1 is set to value1 as specified on
the SIZE option. If the SIZE option is not specified, the binder assumes that it can use all available virtual
storage below 16 MB. We recommend that you use the WKSPACE option with the MAXBLK option and in
place of the SIZE option.

If value2 of the WKSPACE option is not specified, the binder allocates workspace from above 16 MB as
needed until no more space is available.

Under normal circumstances, the binder can determine its own workspace requirements. You should not
need to specify the WKSPACE parameter unless you have unusual virtual storage considerations.

We recommend a minimum of 96 KB below 16 MB and 2048 KB above 16 MB for all binder processing.

XCAL: Exclusive call option
You use the XCAL option when valid exclusive references have been made between segments of an
overlay program. A warning message is issued for each valid exclusive reference, but the binder marks the
output module as executable.

See “References between segments” on page 196 for information about valid exclusive references.

To specify the exclusive call option, code XCAL in the PARM field.

{XCAL | XCAL=NO | NOXCAL}

The OVLY attribute must also be specified when you use the XCAL option. For example:

//LKED EXEC PGM=IEWBLINK,PARM='XCAL,OVLY,...'

XCAL=NO is the default value and can also be specified with the keyword NOXCAL.

XREF: Cross reference table option
You can request a cross-reference table of a program module by coding XREF in the PARM field.

{XREF | XREF=NO | NOXREF}

When the XREF option is specified, the binder produces a cross-reference table of the program module
in the SYSPRINT data set. In the case of an empty module, no program module map will be generated. If
you also need a module map, you must request one using the MAP option. Figure 32 on page 139 contains
an example of a cross reference table.

When a bind specifying the XREF option fails resulting in a not-executable (NX) module, a cross-reference
table will be included in the binder listing.

XREF=NO is the default value and can also be specified with the keyword NOXREF.

Binder options reference

100 z/OS: z/OS MVS Program Management: User's Guide and Reference

Chapter 7. Binder control statement reference

You provide control statements to the binder to specify editing operations and identify additional input.
You can provide entry and module names and specify the authorization code of a program module.

This topic summarizes the binder control statements. Statement descriptions are in alphabetical order,
and include the purpose, syntax, placement in the input stream, and examples.

Before using these control statements, you should also be familiar with the syntax and national
conventions described in “Notational conventions” on page xviii.

Note: This topic refers to binder processing. These concepts apply equally to linkage editor and batch
loader processing unless noted otherwise in Appendix A, “Using the linkage editor and batch loader,” on
page 157. The linkage editor and batch loader cannot process program objects.

Binder syntax conventions
Each binder control statement specifies an operation and one or more operands. Nothing must be written
preceding the operation, which must begin in or after column 2. The operation must be separated from
the operand by one or more blanks; blanks cannot be embedded within the operand field (see “Rules for
comments” on page 102).

Control statements are specified in 80-byte lines. A control statement can be continued on as many lines
as necessary. However, the control statement keyword must be entirely on the first line and the operands
must begin on the first line. A control statement can be continued in one of the following ways:

1. Terminate an operand at a comma followed by a blank. The comma must be in column 71 or earlier.
Continuation lines can begin anywhere after column 1. Any leading blanks are discarded.

2. If the operand field goes to column 71 (with no embedded blanks) and column 72 is nonblank, the
next line is treated as a continuation line. As in 1, the continuation line can begin anywhere after
column 1 and any leading blanks are discarded. Columns 73 through 80 of each line are reserved for
sequence numbers, which are not processed by the binder.

3. An operand enclosed in single quotation marks can be continued. The binder searches as many
records as necessary until it finds the ending quotation mark. The full operand is reconstructed by
concatenating the fragments starting with column 2 of each line. In this case, the continuation of
the operand must start in column 2, or the operand is considered to have embedded blanks and is
truncated at the first blank. You can continue coding additional operands as usual following the ending
quotation mark. An example of this is:

123456789.123456789.123456789.123456789.123456789.123456789.123456789.12
 INCLUDE '/this/is/a/very/long/path/that/needs/to/be/split/across/two/l-
 ines/input.o','./and/a/second/path/private.o'

Most binder control statements require various symbols or names to be specified as operands. Unless
otherwise noted, all such names and symbols must be 32767 bytes or less and consist of EBCDIC
characters within the range of X'41' through X'FE' plus the double-byte character set (DBCS) SO/SI
control characters X'0E' and X'0F'. It is strongly recommended that all such names consist of displayable
characters only and that they are enclosed by single quotation marks if they contain other than upper
case alphanumeric characters. DDnames, member names, and alias names must conform to the JCL
coding rules for those parameters.

You can enclose any symbol except binder-defined keywords with single quotation marks. If you want to
use commas or parentheses in a symbol in a control statement, you must enclose that symbol in single
quotation marks. A single quotation mark embedded in a quoted string must be coded as two consecutive
quotation marks. Only complete symbols can be enclosed in single quotation marks. Characters within
quoted strings will not be folded to upper case, regardless of the value of the CASE option. A quoted string
with no closing quotation mark continues in column 2 of the next line.

Control statement reference

© Copyright IBM Corp. 1991, 2021 101

A number of metasymbols dealing with names and program symbols have been used in the control
statement syntax diagrams in this topic. These metasymbols include the following:

• symbol, newsymbol. A user-assigned name with a maximum length of 32767 bytes and consist only of
characters from the binder's character set, described above.

• externalsymbol, external reference. Those symbols that are or will be defined in the External Symbol
Dictionary (ESD). These include entry names defined by a Label Definition (LD), section names that are
implied entry names, external references (ER) and part references (PR), which are for part names or
pseudoregister (external dummy section) names.

• sectionname. Those symbols which name sections in the module. Section is a generic term
encompassing control sections, private code sections and common areas. Blank common and private
code sections cannot be named on binder control statements.

• directoryname. Those symbols that appear or will appear in the directory of a named library structure.
Directory names include member names, aliases and unqualified z/OS UNIX file names, and have length
restrictions imposed by the underlying file system.

File system Member name Alias name

PDS Library 8 8

PDSE Library 8 1024

z/OS UNIX Directory 255 255

• ddname. The name coded in the label field of a dd-statement. Ddnames are limited to eight bytes.
• pathname. A z/OS UNIX pathname designating either a directory or a regular file (depending on the

control statement). It must begin with either "./" (meaning a relative pathname) or "/" (meaning an
absolute path name) and is limited to 1023 bytes in length. To prevent the pathname from being folded
to uppercase, you should either enclose the pathname in single quotation marks or specify the binder
CASE=MIXED option. z/OS pathnames are replaced in the binder listing output by generated "ddnames"
of the form "/nnnnnnn", where nnnnnnn is numeric. The true pathname may be found in the DDname vs
Pathname report.

You can include blank lines between control statements but not within a statement. A blank line indicates
an end to any statement.

For more information on syntax and notational conventions, see “Notational conventions” on page xviii.

Syntax errors
If a syntax error is detected while processing a control statement, the remainder of the statement is
skipped and not processed. However, any operands in the portion of the statement preceding the error
are processed.

Rules for comments
Placing an asterisk (*) in column 1 of a control statement causes the binder to treat that line as a
comment. The content of column 72 is ignored on a comment line. You can include comment lines
anywhere in the control statement input except within a quoted string. You can also include comments on
a control statement line; anything at the end of a control statement line separated from the operands by
one or more blanks will be treated as a comment. Comments are not processed by the binder but can be
printed.

A line is also treated as a comment if the previous statement ends with a blank but has a nonblank
character in column 72.

Control statement reference

102 z/OS: z/OS MVS Program Management: User's Guide and Reference

Placement information
Binder control statements are placed before, between, or after object modules. They can be grouped, but
they cannot be placed within a module. However, specific placement restrictions might be imposed by the
nature of the services being requested by the control statement. Any placement restrictions are noted.

If a function can be specified either on a control statement or as an option in the PARM field of the EXEC
statement, the control statement specification takes precedence.

ALIAS statement
The ALIAS statement specifies one or more additional names for the primary entry point, and can also
specify names of alternate entry points.

Note: Alternate entry points are not supported for program objects that reside in z/OS UNIX files. If a
z/OS UNIX path name is specified, that name becomes a true alias of the primary entry point.

The binder does not place a limit on the number of alias names that can be specified on an ALIAS
statement or on separate ALIAS statements for one library member. These names are entered in the
directory of the partitioned data set or PDSE in addition to the member name. If the symbol specified as
the alias has appeared on an earlier ALIAS control statement, the new specification replaces the earlier
one.

Note: If the module contains multiple text classes, all entry points must be defined in the same class.

The syntax of the ALIAS statement is:

ALIAS {directoryname[(externalsymbol)]}
 {(SYMLINK, pathname)}
 {(SYMPATH, pathname)}
 [,...]

directoryname
Specifies an alternate name for the program object or load module. The symbol might or might not be
the name of an external entry point within the program.

When the program is executed using the alias name, execution begins at the entry point associated
with the alias. The entry point is determined according to the following rules:

1. If an externalsymbol is specified as an entry point (see below) for the alias, execution begins at that
entry point.

2. If the alias symbol matches an entry name within the program, execution begins at that entry
point.

3. If the alias symbol does not match an entry name within the program, execution begins at the main
entry point.

externalsymbol
Specifies the name of the entry point to be used when the program is executed using the associated
alias. If the external symbol is the name of an entry point within the program, that name is used as
the entry point for the alias. If the external symbol is not an entry point name, but another external
name such as a pseudoregister or an unresolved external reference, the main entry point is used as
the entry point for the alias. If the symbol you specify is not defined in the program, the alias is not
created.

SYMLINK
A symbolic link is a z/OS UNIX file that contains the pathname for another file or directory. Symbolic
links can be links across mounted file systems.

SYMPATH
The contents of the path designated by a SYMLINK request are specified by the next following
SYMPATH request.

Control statement reference

Chapter 7. Binder control statement reference 103

pathname
The pathname to or contained by a symbolic link. The pathname contained in a symbolic link can be
relative or absolute. If a symbolic link contains a relative pathname, the pathname is relative to the
directory containing the symbolic link.

These entries can be repeated in any order. Alias entries can be divided up among separate ALIAS
statements as desired except that there must be at least one SYMPATH specification following a given
SYMLINK or group of SYMLINKs.

Placement: An ALIAS statement can be placed before, between, or after object modules or other control
statements. It must precede a NAME statement used to specify the member name, if one is present.

Note:

1. In an overlay program, an external name specified by the ALIAS statement must be in the root
segment. In a multitext class program object, an alternate entry point specified by an ALIAS statement
must be defined in the same class as the primary entry point.

2. When a program module in an MVS data set is reprocessed, all ALIAS statements should be
respecified so that the directory is updated. Otherwise, for replaced load modules, the aliases remain
in the directory and point to the old library member. When a program object is replaced, the aliases are
deleted.

When a program module in a z/OS UNIX file is reprocessed, the existing aliases will be retained,
whether or not the existing aliases are respecified on ALIAS control statements.

3. Each alias name that is specified must be unique within the library. If the specified alias name matches
an existing member name within the library, the alias will be rejected. If the specified alias name
matches an existing alias name in the library and the replace option (R) was not specified, the alias
will be rejected. If replace was specified, the new alias name will replace the existing one.

4. To avoid name conflicts, delete obsolete alias names from the program library directory.
5. You can execute a program object that resides in a z/OS UNIX file by specifying an alias name.

However, execution will always begin at the main entry point. By using the binder call interface, it is
possible to copy the program module and its aliases to a partitioned data set or a PDSE. The alias
information that was saved in the program object will be used to create aliases for the copied module
as either true aliases or alternate entry points, in accordance with the rules documented here.

6. The binder ALIAS control statement, or equivalent binder API call, is used to specify an alias to a
particular entry point (target symbol) in the executable. However, for a module with multiple text
classes, all the entry points must be in the first class of the first segment (PO3 or higher support
multiple loadable text classes). Beginning with V2R2, if a user sets an alias to a symbol not in the
first class of the first segment (perhaps unintentionally), Program Management reports this situation as
described in the following:

a. For ALIAS A, if A matches the name of an external symbol, and that symbol is not in the first class
of the first segment, the alias A is made a true alias (just as if there were no matching external
symbol) and so is marked as EXECUTABLE, and Program Management issues the informational
message IEW2619I.

b. For ALIAS A(TARGET), if TARGET matches the name of an external symbol and that symbol is not in
the first class of the first segment, the alias A is made a true alias (just as if there were no matching
external symbol) and so is marked as NOT EXECUTABLE. The return code is minimally 4 and the
warning message IEW2652 is issued.

Symbolic link support

The SYMLINK and SYMPATH functions of the ALIAS control statement can be used to establish an
arbitrary number of symbolic links. The contents of the path designated by a SYMLINK request are
specified by the next following SYMPATH request. The result of a SYMLINK/SYMPATH pair is the creation
of a file whose:

1. pathname is the SYMLINK path concatenated to the SYSLMOD path
2. file type is 'symbolic link'

Control statement reference

104 z/OS: z/OS MVS Program Management: User's Guide and Reference

3. contents are given by SYMPATH.

SYMPATH specification applies to all SYMLINK specifications that precede it, until the preceding
SYMPATH specification (if any).

Thus, in the following skeleton example:

 ALIAS (SYMLINK,A1)
 ALIAS (SYMLINK,A2)
 ALIAS (SYMPATH,B1)
 ALIAS (SYMLINK,A3)
 ALIAS (SYMLINK,A4)
 ALIAS (SYMLINK,A5)
 ALIAS (SYMPATH,B2)
 ALIAS (SYMLINK,A6)

SYMPATH B1 is used for A1 and A2, SYMPATH B2 is used for A3 through A5, and A6 is in error.
Continuation rules and general syntactical rules are the same as those for other Binder control
statements and control statement operands. Length limits for both the control statement and ADDA API
call are 1024 for both SYMLINK and SYMPATH.

If the GID or UID options are specified, the UID and GID values for SYSLMOD are also used for the
symbolic links.

Example
An output module, ROUT1, is assigned an alternate entry point, CODE1. CODE1 can also be invoked by
an alias, CODE2. In addition, calling modules have been written using both ROUT1 and ROUTONE to refer
to the output module. Rather than correct the calling modules, an alternate library member name is also
assigned.

 ALIAS CODE1,CODE2(CODE1),ROUTONE
 NAME ROUT1

Because CODE1 is an entry name in the output module, execution begins at the point referred to when
this name is used to call the module. The same entry point will be selected when CODE2 is called,
since CODE2 is an alias for the CODE1 entry point. The modules that call the output module with the
name ROUTONE now correctly refer to ROUT1 as its main entry point. The names CODE1, CODE2, and
ROUTONE appear in the library directory along with ROUT1.

ALIGNT statement
The ALIGNT statement specifies an alignment boundary to be used for the specified section name.

ALIGNT boundary,sectionname
 [(classname1[,classname2]...)]

boundary
Specifies the alignment boundary to be used for the specified section name. The value may be any
power of 2 between 1 and 4096; specifically, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, or
4096 are allowed.

The value 0 is also allowed, which causes the default alignment to be used. This is the alignment that
is used if no ALIGNT statement is specified.

sectionname
Specifies the name of the section to be aligned on the specified boundary.

classname
The names of the classes defined in sectionname, to be aligned on the specified boundary. If not
specified, all the class names (elements) in the specified section are aligned, with the exception of
merge classes.

Placement: An ALIGNT statement can be placed before, between, or after modules or other control
statements.

Control statement reference

Chapter 7. Binder control statement reference 105

Note:

1. If a section is changed by a CHANGE or REPLACE control statement, and boundary alignment is
wanted, specify the new name on the ALIGNT statement.

2. The section and classes named can appear in either the primary input or the automatic call library, or
both.

3. ALIGNT does not affect the alignment of pseudo-registers in the section. It only affects the alignment
of parts if their defining merge class name is specified. It is applied to every part in the merge class in
addition to the class itself.

4. ALIGNT is not affected by the ALIGN2 option.
5. If class names are specified, those classes will be aligned. A merge class name may be listed. If the

same section name is specified on more than one ALIGNT statement that specifies class names, those
class names are added to the list of classes to be aligned.

6. If ALIGNT that specifies a section name with no class names is followed by one or more ALIGNT
statements that specify class names, any unspecified classes in the section (excluding any merge
classes) are aligned according to the first ALIGNT that had no class names.

7. The alignment specification is not preserved if the module is rebound. ALIGNT must be specified every
time the module is bound.

8. Unlike ALIGNT, the PAGE control statement interacts with other methods of specifying alignments.
PAGE produces results like the ALIGNT 4096 (or ALIGNT 2048 if the ALIGN2=YES option is specified).
PAGE is equivalent to using (P) on the ORDER control statement.

Consider the following example:

ALIGNT 32,MYDATA
ALIGNT 256,MYCODE(B_TEXT)
ALIGNT 256,MYCODE(C_CODE,MY_CLS)

This example demonstrates the use of aligning multiple classes of two different sections. In one case, all
classes (elements) are aligned. In the other, only certain classes are specified.

Example

//BIND EXEC PGM=IEWBLINK,PARM='LIST,MAP,COMPAT=CURR'
......
//SYSLIN DD *
ENTRY CSECT0
INCLUDE OBJLIB(OBJECT1)
ALIGNT 512,CSECT2(CS2_CLS23)
ALIGNT 00004096,CSECT2(C123456789012345)
ALIGNT 00000000,CSECT2(CS2_CLS26)
ALIGNT 01024,CSECT2(CS2_CLS2A,CS2_CLS2B,CS2_CLS2C,CS2_CLS2D)
ALIGNT 032,CSECT2(cs2_cls2a)
NAME TEMPA(R)
/*

AUTOCALL statement
The AUTOCALL control statement prompts the binder to perform incremental (or immediate) autocall
using only the given library as the search library to resolve symbol references. See “Resolving external
references” on page 53 for more information on autocall.

The syntax of the AUTOCALL statement is:

AUTOCALL ddname | pathname

ddname
Specifies the name of a DD statement that describes a PDSE program object library, a PDS library
containing object modules or load modules, or a z/OS UNIX directory or archive library file.

Control statement reference

106 z/OS: z/OS MVS Program Management: User's Guide and Reference

pathname
Specifies the absolute or relative pathname for a z/OS UNIX directory or archive library file. See
“Binder syntax conventions” on page 101 for a discussion of continuations and lower case letters.

Placement: The AUTOCALL control statement can be placed anywhere in the job stream or input data set.

Note:

1. This statement can be specified at any time during primary and secondary input to the binder.
However, if there are any references left unresolved after any number of AUTOCALL control
statements, the binder does not diagnose them.

2. If no autocall (NCAL or CALL=NO) is in effect, incremental autocall is not performed. See Chapter 6,
“Binder options reference,” on page 69 for information on the CALL and NCAL option.

3. The AUTOCALL statement replaces one form of the LIBRARY statement which was supported by
the Language Environment prelinker but is not supported by the binder. (See “Binder extensions
supporting the Language Environment” on page 32.)

4. No symbol renaming is done when the binder attempts to resolve references during incremental
autocall.

Example
The following example shows how the AUTOCALL statement is invoked to immediately resolve references
made available during a recent INCLUDE.

//OBJMOD DD DSNAME=PROJECT.TAXES,DISP=(OLD,DELETE),...
//LOADMOD DD DSNAME=PROJECT.LOADLIB,DISP=OLD,...
//SYSLIB DD DSNAME=PROJECT.MAIN.LOADLIB,DISP=OLD,...
//SYSLIN DD *
 INCLUDE OBJMOD
 AUTOCALL LOADMOD
⋮
/*

In the example, OBJMOD is included first, followed by an autocall request that uses the LOADMOD
module library to resolve references. At this point, no attempt is made to resolve references using SYSLIB,
and unresolved references are not diagnosed. The binder waits until all input has been specified to do a
final autocall. At that time, it attempts to resolve any outstanding references by searching SYSLIB. After
final autocall, if any references remain unresolved, the binder states them in its messages.

CHANGE statement
The CHANGE statement causes an external symbol to be replaced by the symbol in parentheses following
the external symbol. The external symbol to be changed can be a control section name, a common area
name, an entry name, an external reference, or a pseudoregister. More than one such substitution can be
specified in one CHANGE statement. The syntax of the CHANGE statement is:

CHANGE [-IMMED,] externalsymbol(newsymbol)
 [,externalsymbol(newsymbol)]...

-IMMED
Causes the target of the CHANGE control statement to be the sections already included in the module
being bound.

externalsymbol
The external symbol that is changed.

newsymbol
The name to which the external symbol is changed.

Placement: In the job stream or input data set, the CHANGE control statement must be placed before
either the module containing the external symbol to be changed, or the INCLUDE control statement
specifying the module. The scope of the CHANGE statement is across the next object module, load
module, or program object. However if the -IMMED option is specified, the CHANGE control statement

Control statement reference

Chapter 7. Binder control statement reference 107

should be placed anywhere after the module being changed, or the INCLUDE statement specifying the
module.

Note:

1. External references from other modules to a changed control section name or entry name remain
unresolved unless further action is taken.

2. If both the original name and the new name specified for the external symbol are already defined in
the output module, the new name is deleted from the module before the original name is changed. If
the new name defines a control section, the original section with the same name will be deleted. The
results received from the binder under this condition vary from the results received from the linkage
editor.

3. When a REPLACE statement that deletes a control section is followed by a CHANGE statement with the
same control section name, the results are unpredictable.

4. If a CHANGE statement without the -IMMED option is not followed by any included module, the binder
issues a diagnostic message and ignores the change.

5. If a CHANGE statement appears in a module included from an automatic call library, it will be ignored if
it is not followed by a module from the same member.

6. The -IMMED option is not allowed during autocall processing.
7. externalsymbol may be specified using the syntax $PRIVxxxxxx (where xxxxxx is 6 hexadecimal digits)

to represent an unnamed symbol. To determine the appropriate value to use, it is necessary to
rebind the single module and produce a MAP and/or XREF. The $PRIVxxxxxx symbol names from that
binder output can be used in CHANGE statements on the very next bind of the single module. Names
$PRIV000000 - $PRIV00000F are reserved by the Binder and may not be used as externalsymbol.

Examples
Change Control Section Name: Example 1

Two control sections in different modules have the name TAXROUT. Because both modules are to be
bound together, one of the control section names must be changed. The module to be changed is defined
with a DD statement named OBJMOD. The control section name could be changed as follows:

//OBJMOD DD DSNAME=PROJECT.TAXES,DISP=OLD,...
//SYSLIN DD *
 CHANGE TAXROUT(STATETAX)
 INCLUDE OBJMOD
⋮
/*

As a result, the name of control section TAXROUT in module TAXES is changed to STATETAX.

Change Module References: Example 2

A program object or load module contains references to TAXROUT that must be changed to STATETAX.
This module is defined with a DD statement named LOADMOD. The external references could be changed
at the same time the control section name is changed:

//OBJMOD DD DSNAME=PROJECT.TAXES,DISP=(OLD,DELETE),...
//LOADMOD DD DSNAME=PROJECT.LOADLIB,DISP=OLD,...
//SYSLIN DD *
 CHANGE TAXROUT(STATETAX)
 INCLUDE OBJMOD
 CHANGE TAXROUT(STATETAX)
 INCLUDE LOADMOD(INVENTRY)
⋮
/*

As a result, control section name TAXROUT in module TAXES and external reference TAXROUT in module
INVENTRY are both changed to STATETAX.

For program objects with multiple text classes, there may be other related symbols that make up the
compilation unit, that have names that should be changed along with the control section. In particular,

Control statement reference

108 z/OS: z/OS MVS Program Management: User's Guide and Reference

there may also be entry points and parts which are named implicitly or explicitly by language translators.
Often all of the names will follow a naming convention, where they begin with a common prefix so that
they are easily recognizable as belonging to the same compilation unit. Language translators often choose
such names implicitly, such as based on program member name or file name, or explicitly, such as by a
user controlled language translator language statement, option or control statement.

With a program objects that utilize multiple text classes, if all the related symbols are not renamed, it
might not be apparent that they are related to the same compilation unit. Also, there are often relocations
within the compilation unit, which refer to these related symbol names. Thus, there are situations where if
they are not all renamed, there can be errors at execution time due to unintended relocations. Unintended
relocations may occur when there are duplicates of the changed symbols names.

Thus it is recommended that when binding program objects which utilize multiple text classes, all such
related symbols be renamed. For example, a language translator may have produced a single compilation
unit with the following symbol names:

control section: TAXROUT
labels: TAXROUT, TAXROUT#C
part: TAXROUT#S

These related symbols should all be changed if any one is changed, as in the following example:

CHANGE multiple text class Program Object: Example 3:

//OBJMOD DD DSNAME=PROJECT.TAXES,DISP=OLD,...
//SYSLIN DD *
 CHANGE TAXROUT(STATETAX)
 CHANGE TAXROUT#C(STATETAX#C)
 CHANGE TAXROUT#S(STATETAX#S)
 INCLUDE OBJMOD

If for example the same object module is included again it will now have unique related names so there
will be no unintended relocations due to duplicate names. Subsequent uses of the object module can
change the related symbols to their own unique names, thus ensuring there are never duplicates.

CHANGE multiple text class Program Object with duplicates: Example 4:

//OBJMOD DD DSNAME=PROJECT.TAXES,DISP=OLD,...
//SYSLIN DD *
 CHANGE TAXROUT(STATETAX)
 CHANGE TAXROUT#C(STATETAX#C)
 CHANGE TAXROUT#S(STATETAX#S)
 INCLUDE OBJMOD
 CHANGE TAXROUT(FEDERALTAX)
 CHANGE TAXROUT#C(FEDERALTAX#C)
 CHANGE TAXROUT#S(FEDERALTAX#S)
 INCLUDE OBJMOD

As in the single text class Example 2, other modules making external references to any of these changed
symbol names, will also need to use the same CHANGE statements, to match whichever new symbol
names it intends to use.

ENTRY statement
The ENTRY statement specifies the symbolic name of the first instruction to be executed when the
program is called by its module (member) name for execution or by an alias that does not match an
executable external symbol. An ENTRY statement should be used whenever a module is reprocessed by
the binder. The syntax of the ENTRY statement is:

ENTRY externalsymbol

externalsymbol
Defined as either a control section name or an entry name in an input module.

Control statement reference

Chapter 7. Binder control statement reference 109

Placement: An ENTRY statement can be placed before, between, or after object modules or other control
statements. It must precede the NAME statement for the module, if one is present.

Note:

1. If you provide more than one ENTRY statement, the main entry point specified on the last statement is
used.

2. In an overlay program, the first instruction to be executed must be in the root segment.
3. The external name specified must be a name associated with an instruction, not data, if the module is

executed.
4. The order of precedence for determining the entry point is (from highest to lowest):

• The ENTRY control statement or EP option specified on a SETOPT control statement
• An entry point specified as an EP option in the PARM field of an EXEC statement or in a file processed

as a result of the OPTIONS option in the PARM field
• An entry point specified on an END statement of an object module

If none of the above is present, the entry point defaults to either CEESTART if DYNAM=DLL and
CEESTART exists, or the first byte of the first control section in the program. If the module contains
multiple text classes and an entry point is not specified, the results are not predictable.

5. If the module contains multiple text classes, the primary and all alternate entry points must be defined
in the same class.

Example
In the following example, the main entry point is INIT1:

//LOADLIB DD DSNAME=PROJECT.LOADLIB,DISP=OLD
//SYSLIN DD *
 ENTRY INIT1
 INCLUDE LOADLIB(READ,WRITE)
/*

INIT1 must be either a control section name or an entry name in one of the program objects or load
modules named READ or WRITE.

EXPAND statement
The EXPAND statement lengthens control sections or named common areas by a specified number of
bytes. The syntax of the EXPAND statement is:

EXPAND sectionname(length[,classname])
 [,sectionname(length[,classname])].

sectionname
Symbolic name of a common area or control section whose length is increased.

length
The decimal number of bytes to be added to the length of the section. The length of the section can be
expanded to reach the maximum text size of a program object or load module. The maximum text size
of a program object is 1 GB; the maximum text size of a load module is 16 MB. Binary zeros are used
to initialize an expanded control section.

classname
The name of the text class to be expanded. Classname is not valid when COMPAT=LKED or
COMPAT=PM1. Classname defaults to B_TEXT if it is not specified.

A message indicates the number of bytes added to the control section and the offset, relative to the
start of the control section, where the expansion begins. The effective length of the expansion is given in
hexadecimal and can be greater than the specified length if, after the specified expansion, padding bytes
must be added for alignment of the next control section or named common area.

Control statement reference

110 z/OS: z/OS MVS Program Management: User's Guide and Reference

Placement: An EXPAND statement can be placed before, between, or after other control statements or
object modules. However, the statement must follow the module containing the control section or named
common area to which it refers. If the control section or named common area is entered as the result of
an INCLUDE statement, the EXPAND statement can appear anywhere between the INCLUDE and NAME
statements.

Note: EXPAND should be used with caution so as not to increase the length of a program beyond its
own design limitations. For example, if space is added to a control section beyond the range of its base
register addressability, that space is unusable unless you make other changes to the program to allow it
to address the extra space.

Example
In this example, EXPAND statements add a 250-byte patch area (initialized to zeros) at the end of control
section CSECT1 and increase the length of named common area COM1 by 400 bytes.

//LKED EXEC PGM=IEWBLINK
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DSNAME=PROJECT.PROGLIB,DISP=OLD
//SYSLIN DD DSNAME=&&LOADSET,DISP=(OLD,PASS)
// DD *
 EXPAND CSECT1(250)
 EXPAND COM1(400)
 NAME MOD1(R)
/*

IDENTIFY statement
The IDENTIFY statement specifies any data you supply be entered into the CSECT identification records
(IDR) for a particular control section. The statement can be used either to supply descriptive data for
a control section or to provide a means of associating system-supplied data with executable code. The
syntax of the IDENTIFY statement is:

IDENTIFY sectionname('data')[,sectionname
 ('data')]...

sectionname
The symbolic name of the control section to be identified.

data
Specifies up to 80 EBCDIC characters of identifying information for program objects, and up to 40
characters for load modules. You can supply any information desired for identification purposes.

Placement: An IDENTIFY statement must follow the module containing the control section to be
identified or the INCLUDE statement specifying the module.

The syntax rules for the operand field are:

1. Blanks are not allowed between the CSECT name and the left parenthesis.
2. No blanks or characters are allowed between the left parenthesis and the leading single quotation

mark nor between the trailing single quotation mark and the right parenthesis.
3. The data field consists of from 1 to 80 characters for program objects and 1 to 40 characters for load

modules; therefore, a null entry must be represented, minimally, by a single blank.
4. Blanks can appear between the leading single quotation mark and the trailing single quotation mark.

Each blank counts as 1 character toward the character limit.
5. A single quotation mark between the leading quotation mark and the trailing quotation mark is

represented by 2 consecutive quotation marks. The pair of quotation marks counts as 1 character
toward the character limit.

6. The IDENTIFY statement can be continued. If you are using the binder, the data characters end in
column 71 and continue at column 2 on the next line.

Control statement reference

Chapter 7. Binder control statement reference 111

7. If a leading quotation mark is found, all characters are read in until a trailing quotation mark is found or
the character limit is reached.

8. A blank following a comma that terminates an operand also terminates the operand field for that
record.

9. Double-byte character set (DBCS) characters can be included within the descriptive data. DBCS
characters must be delimited by the shift-out (X'0E') and shift-in (X'0F') characters. The shift-out and
shift-in characters and the delimited DBCS characters count as one or two bytes, respectively, toward
the total length of the string.

You can provide more than one IDENTIFY statement for each control section name when you are creating
a program object. However, if you are creating a load module, you can provide only one IDENTIFY
statement. If you provide more than one IDENTIFY statement per control section for load modules, the
information on only the last IDENTIFY statement is saved. The contents of each IDENTIFY statement will
be saved in a separate record in the program object.

Example
In this example, IDENTIFY statements are used to identify the source level of a control section, a PTF
application to a control section, and the functions of several control sections.

//LKED EXEC PGM=IEWBLINK
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DSNAME=PROJECT.LOADLIB,DISP=OLD
//OLDMOD DD DSNAME=PROJECT.OLD.LOADLIB,DISP=OLD
//PTFMOD DD DSNAME=PROJECT.PTF.OBJECT,DISP=OLD
//SYSLIN DD *

(input object deck for a control section named FORT)

 IDENTIFY FORT('LEVEL 03')
 INCLUDE PTFMOD(CSECT4)
 IDENTIFY CSECT4('PTF99999')
 INCLUDE OLDMOD(PROG1)
 IDENTIFY CSECT1('I/O ROUTINE'),
 CSECT2('SORT ROUTINE'),
 CSECT3('SCAN ROUTINE')
/*

Execution of this example produces IDR records containing the following identification data:

• The component ID of the binder that produced the program object or load module, the binder version
and modification level, and the date of the current binder processing of the module. This information is
provided automatically irrespective of whether you specify an IDENTIFY statement.

• User-supplied data describing the functions of several control sections in the module, as indicated on
the IDENTIFY statements.

• If the language translator used supports IDR, the identification records produced by the binder also
contain the name of the translator that produced the object module, its version and modification level,
and the date of compilation.

The IDR records created by the binder can be referenced by using the LISTIDR option of the service aid
program AMBLIST. For instructions on how to use AMBLIST, see z/OS MVS Diagnosis: Tools and Service
Aids.

IMPORT statement
The IMPORT statement specifies an external symbol name to be imported and the library member or z/OS
UNIX file name where it can be found. An imported symbol is one that is expected to be dynamically
resolved. The syntax of the IMPORT statement is:

IMPORT {CODE | DATA | CODE64 | DATA64},
 dllname,import_name[,offset]

Control statement reference

112 z/OS: z/OS MVS Program Management: User's Guide and Reference

{CODE | DATA | CODE64 | DATA64}
Mutually exclusive keywords that specify the type of symbol being imported.

If CODE or CODE64 is specified, the import_name must represent the name of a code section or entry
point. Specify CODE64 when using 64-bit addressing mode or specify CODE for any other addressing
mode.

If DATA or DATA64 is specified, the import_name must represent the name of a variable or data type
definition to be imported. Specify DATA64 when using 64-bit addressing mode or specify DATA for any
other addressing mode.

dllname
The name of the DLL module that contains the import_name to be imported. If it is a member of a PDS
or PDSE, it must be a primary name or an alias. The length is limted to eight bytes unless it is an alias
name in a PDSE directory. In that case, the limit is 1024 bytes. If it is a z/OS UNIX file, the file name is
limited to 255 bytes.

import_name
The symbol name to be imported. In programming terms, it represents a function or method
definition, or a variable or data type definition. This distinction is made by specifying either CODE,
CODE64, DATA, or DATA64. The import_name can be up to 32767 bytes in length.

offset
Offset consists of up to 8 hexadecimal characters. The offset will be stored with the DLL information
for an imported function. This is primarily for the use of Language Environment.

In order to continue a dllname or an import_name, code a nonblank character in column 72. Either blanks
or commas will be accepted as delimiters between parameters.

Placement: The IMPORT statement can be placed before, between, or after object modules or other
control statements.

Note:

1. The DYNAM(DLL) binder option must be specified for IMPORT statements to take effect (see Table 8
on page 72).

2. IMPORT statements are processed as they are received by the binder. However, symbol resolution is
not done against the imported symbols until the binder's final autocall is finished.

3. A bind job for a DLL application should include an IMPORT control statement for any DLLs that the
application expects to use. Otherwise, if the DLL name is unresolved at static bind time, it will not be
accessible at run time.

4. Ensure that the dllname matches the actual name of the DLL. Otherwise, import names will not be
resolved.

5. Typically, a dynamic link library will have an associated side file of IMPORT control statements, and
you will include this side file when statically binding a module that imports functions or variables from
that library. However, you can also edit the records in the side file or substitute your own IMPORT
control statements so that some symbols are imported from DLLs in a different library.

6. Modules with imported symbols can be saved only in PM3 or later format.
7. When you rebind a DLL, you must include the IMPORT statements. Information from the IMPORT

control statements is not retained from one bind to another if the object is stored as a PO1, PO2, or
PO3 format program objects. If you rebind a PO4 or higher program object, the IMPORT information
msaved from the previous bind will be brought in, unless the -NOIMPORTS option is specified.

8. Import control statements generated by the binder will contain quotation marks around both the
symbol name and the DLL name.

Example
IMPORT statements specify which symbols should be imported from a DLL provider or providers:

// EXEC PGM=IEWL,PARM='MAP,XREF,CASE=MIXED'
//LOADMOD DD DSNAME=PROJECT.LOADLIB,DISP=SHR

Control statement reference

Chapter 7. Binder control statement reference 113

//OBJECT1 DD PATH='/sl/app1/pm3d3/dlla01',PATHDISP=(KEEP,KEEP)
//SYSLIN DD *
 IMPORT CODE TAXES97,Compute_97_Taxes_Schedule1
 IMPORT CODE TAXES97,Compute_97_Taxes_Schedule2
 IMPORT CODE64 TAXES03,Compute_03_Taxes_Schedule1
 IMPORT CODE64 TAXES03,Compute_03_Taxes_Schedule2
 IMPORT DATA REVENUE,TotalRevenue
 IMPORT DATA64 REVENUE03,TotalRevenue03
 INCLUDE OBJECT1
⋮
/*

In the example above, two 31-bit addressable functions from member TAXES97, two 64-bit addressable
functions from member TAXES03, one 31-bit addressable data variable from member REVENUE, and
one 64-bit addressable data variable from REVENUE03 are being imported. These members should be
in a dynamic link library, which can be found by the system search mechanisms at execution time. For
example, the dynamic link library containing these members could be part of the STEPLIB concatenation.

INCLUDE statement
The INCLUDE statement specifies sequential data sets, library members, or z/OS UNIX files that are to
be sources of additional input for the binder. INCLUDE statements are processed in the order in which
they appear in the input. However, the sequence of control sections within the output program object or
load module does not necessarily follow the order of the INCLUDE statements. If the order of the CSECTs
within the module is significant, you must specify the desired sequence by using ORDER statements. The
syntax of the INCLUDE statement is:

INCLUDE [{-ATTR, | -IMPORTS, | -ALIASES,
 |-NOATTR, | -NOIMPORTS,
 |-NOALIASES}...]
 {ddname[(membername |
 relative-path[,...])] | pathname}[,...]

Note: If options that contradict one another are specified, the last valid option specified will be used.
For example, if both -ATTR and -NOATTR are specified in that order, the binder will honor the -NOATTR
option.

-ATTR
Specifies that module attributes should be copied from the input module and be applied to the
module being built by the binder. The attributes which are copied are: AC, AMODE, DC, OL, REUS,
RMODE, SSI, TEST, entry point, DYNAM, and MIGRATABLE.

Note:

1. Attributes cannot be included if the input is an object module, or if there is no member name on
the INCLUDE control statement and the INCLUDE designates a load module.

2. Attributes brought in for a given module specified with INCLUDE override attributes copied in for
previous modules.

3. Attributes override attributes requested by the Binder invocation parameters, but not those set by
control statements such as SETOPT or MODE.

-IMPORTS
Specifies that dynamic resolution information (if any) will be copied from the input module. This
option is not required, as the INCLUDE statement will always bring in any available dynamic resolution
information unless it is suppressed by -NOIMPORTS. This option is still supported for compatibility
reasons.

Such dynamic resolution information may exist for PO4 or above format program objects. The
dynamic resolution information for a symbol consists of the symbol name, the CODE, CODE64, DATA,
or DATA64 designation, and the name of the DLL from which the symbol is to be dynamically resolved.
This is the same information as that provided on the IMPORT statement for the symbol. If this
information is available via INCLUDE, the IMPORT control statement need not be input on a re-bind.
If there is more than one entry for a particular symbol being imported, no message will be issued and
the first occurrence will be retained.

Control statement reference

114 z/OS: z/OS MVS Program Management: User's Guide and Reference

-ALIASES
Specifies that the aliases of the input module be copied in and used as aliases for the output module.
Aliases can be included only if:

• the input is a program object in either a UNIX file or a PDSE (and regardless of where the PDSE
member name is)

• the input is a load module with the member name in the INCLUDE.

-NOATTR
Specifies that module attributes will not be copied from the input module. This is the default.

-NOIMPORTS
Specifies that dynamic resolution information (if any) will not be copied from the input module.

-NOALIASES
Specifies that the aliases of the input will not be copied from the input module. This is the default.

ddname
The name of a DD statement that describes a sequential data set, a PDS, a PDSE, or a z/OS UNIX
file to be used as additional input to the binder. A DD statement must be supplied for every ddname
specified in an INCLUDE statement. For a sequential data set, only ddname should be specified. For
a PDS or PDSE without a member qualification in the JCL, at least one member name must also be
specified. If only a single member is included, its member name can be specified in the JCL rather
than on the control statement.

When the source is a z/OS UNIX file, the DD statement must contain the full or partial pathname of
the file to be included. If a partial pathname is provided it must be completed using a relative-path
expression following the ddname.

membername
The name of or an alias for a member of the PDS or PDSE library defined in the specified DD
statement.

pathname
The absolute or relative pathname for a z/OS UNIX file that can be up to 1023 bytes. Note that this
is a direct specification for z/OS UNIX files. z/OS UNIX files can also be specified indirectly with a DD
statement (see above). “Example 2” on page 116 uses pathname. See “Binder syntax conventions” on
page 101 for a discussion of continuations and lower case letters.

relative-path
If the referenced DDNAME specifies a path, then relative-path will be appended to that path name.

Placement: An INCLUDE statement can be placed before, between, or after object modules or other
control statements.

Note:

1. A NAME statement in any data set specified in an INCLUDE statement is invalid; the NAME statement
is ignored. All other control statements are processed.

2. The INCLUDE statement is not allowed in a data set that is included from an automatic call library.
3. When invoking the binder using the TSO link command, an INCLUDE statement specifying a ddname

of SYSLMOD will be allocated to the output library, unless SYSLMOD has been specifically allocated to
another library.

Example 1
An INCLUDE statement can specify two data sets to be the input to the binder:

//OBJMOD DD DSNAME=&&OBJECT,DISP=(OLD,DELETE)
//LOADMOD DD DSNAME=PROJECT.LOADLIB,DISP=SHR
//SYSLIN DD *
 INCLUDE OBJMOD,LOADMOD(TESTMOD,READMOD)
⋮
/*

Control statement reference

Chapter 7. Binder control statement reference 115

Two separate INCLUDE statements could also have been used in this example:

INCLUDE OBJMOD
INCLUDE LOADMOD(TESTMOD,READMOD)

Example 2
INCLUDE statements can reference both MVS data sets and z/OS UNIX files to be used as input to the
binder. z/OS UNIX files can be specified directly on an INCLUDE statement, or indirectly through DD
statements that in turn reference z/OS UNIX files:

//LOADMOD DD DSNAME=PROJECT.LOADLIB,DISP=SHR
//OBJECT2 DD PATH='/sl/app1/pm3d3/dlla02',PATHDISP=(KEEP,KEEP)
//SYSLIN DD *
 INCLUDE LOADMOD(TESTMOD,READMOD)
 INCLUDE '/ml/app1/pm3d3/dlla01'
 INCLUDE OBJECT2
⋮
/*

INSERT statement
We do not recommend using the INSERT and OVERLAY statements for program objects. The binder
supports the overlay format for compatibility only. If you use the OVERLAY statement, a program
object will be created with a compatibility level of PM1 and, therefore, will not make use of the binder
enhancements available in later releases. For more information on the use of the INSERT statement, see
Appendix D, “Designing and specifying overlay programs,” on page 191.

The INSERT statement repositions a section from its position in the input sequence to a segment in an
overlay structure. However, the sequence of sections within a segment is not necessarily the order of the
INSERT statements.

If a symbol specified in the operand field of an INSERT statement is not present in the external symbol
dictionary, it is entered as an external reference. If the reference has not been resolved at the end of
primary input processing, the binder attempts to resolve it from the automatic call library. The syntax of
the INSERT statement is:

INSERT sectionname[,sectionname]...

sectionname
The name of the section to be repositioned. A particular section can appear only once within a
program object or load module.

Placement: The INSERT statement must be placed in the input sequence following the OVERLAY
statement that specifies the origin of the segment in which the section is positioned. If the section
is positioned in the root segment, the INSERT statement must be placed before the first OVERLAY
statement.

Note:

1. Sections that are positioned in a segment must contain all address constants to be used during
execution unless:

• The A-type address constants are located in a segment in the path.
• The V-type address constants used to pass control to another segment are located in the path. If an

exclusive reference is made, the V-type address constant must be in a common segment.
• The V-type address constants used with the SEGLD and SEGWT macro instructions are located in the

segment.
2. Automatically called sections not specified on INSERT statements are added to the root segment.

Control statement reference

116 z/OS: z/OS MVS Program Management: User's Guide and Reference

Example
The following INSERT (and OVERLAY) statements specify the overlay structure shown in Figure 21 on
page 117:

// EXEC PGM=IEWBLINK,PARM='OVLY,XREF,LIST'
 .
 .
 .
//SYSLIN DD *
 INSERT CSA
 INSERT CSB
 OVERLAY ALPHA
 INSERT CSC,CSD
 OVERLAY ALPHA
 INSERT CSE
/*

Figure 21. Overlay structure for INSERT statement example

LIBRARY statement
The LIBRARY statement can be used to specify:

• Additional automatic call libraries that contain modules used to resolve external references found in the
program.

• Restricted no-call: External references that are not to be resolved by an automatic library call during the
current binder job step.

• Never-call: External references that are not to be resolved by an automatic library call during this or any
subsequent binder job step.

When LIBRARY statements identify additional libraries that can be used, the following search order is
applied during final autocall:

1. The library or libraries associated with the first LIBRARY specification are searched. This may identify a
z/OS UNIX directory, a z/OS UNIX archive, a partitioned data set, or a concatenation of partitioned data
sets.

• For a z/OS UNIX directory, the file names and links in the directory are checked.

Control statement reference

Chapter 7. Binder control statement reference 117

• For a z/OS UNIX archive or C370LIB PDS, all names that have been cataloged by the ar command or
Object Library Utility are checked.

• For other partitioned data sets, only the member names and aliases are checked.
• If specific names are listed in the LIBRARY specification, only those names can be used for

resolution, otherwise any name can be used.
2. Libraries associated with other LIBRARY specifications are searched in the order the specifications

were provided within a LIBRARY statement and the order in which the LIBRARY statements were
provided.

3. The SYSLIB concatenation is searched.
4. If unresolved symbols remain, the search is restarted from step 1. It is repeated until no symbols are

resolved in a complete pass through all libraries.

The syntax of the LIBRARY statement is:

LIBRARY {{ddname(membername[,…])}
 {ddname2}
 {pathname}
 {(externalreference[,…])}
 {*(externalreference[,…])}},…

ddname
The name of a DD statement that defines a library from which the listed symbols will be included
during automatic library call.

membername
Usually, the name of or an alias for a member of the specified library. If the DDNAME points to a UNIX
archive, the names in parentheses can be any external symbols indexed by the ar command. If the
DDNAME points to a C370LIB, the names in parentheses can be any external symbols defined by the
special C370LIB directory. Conversely, if member names are used for a C370LIB the binder looks at
the members only if there are unresolved symbols whose name match the member name.

Here is an example. A C370LIB (DDname MYC3LIB) contains a member named FOO within which
there is an external entry FooSez, and that FooSez is in the special C370LIB directory. Also, a program
has an unresolved symbol FooSez.

• If the LIBRARY statement says MYC3LIB(FOO), the symbol is not found.
• If it says MyC3LIB('FooSez'), it is resolved.
• If it says MYC3LIB(FOO) and the program also contains unresolved symbol FOO, both are resolved.

Only those members specified are used to resolve references.

ddname2
The name of a DD statement that defines a library that may be used to resolve references during
automatic library call. The DD statement can point to a PDS, PDSE, PDS/PDSE concatenation, z/OS
UNIX directory, or z/OS UNIX archive library.

pathname
The name of an z/OS UNIX archive library or directory that may be used to resolve references during
automatic library call. For a directory, the binder looks for files or links whose name matches the
symbol to be resolved.

(externalreference)
An external reference that can be unresolved after primary input processing. The external reference is
not to be resolved by automatic library call.

*
Indicates never-call; the external reference should never be resolved from an automatic call library. If
the * (asterisk) is missing, the reference is left unresolved during the current binder job step but can
be resolved in a subsequent step.

If all binder input modules containing references to a specific symbol were bound with never-call, that
symbol is not resolved by automatic library call during this binder run. However, if one or more input

Control statement reference

118 z/OS: z/OS MVS Program Management: User's Guide and Reference

modules do not indicate a symbol as never-call, the binder attempts to resolve the symbol from the
automatic call library.

Placement: A LIBRARY statement can be placed before, between, or after object modules or other
control statements.

Note:

1. A member or external reference listed in a LIBRARY statement has no affect except when a matching
name appears as an unresolved reference in the program.

2. For C370LIB or archives, the name may be any symbol listed in the archive or special C370LIB
directory.

3. For a non-C370LIB PDS or PDSE, the name must be a member name or alias to be effective.
4. For a UNIX directory, the name must be a file name or alias to be effective.
5. If the NCAL option is specified, the LIBRARY statement has no effect.
6. Members included by automatic library call are placed in the root segment of an overlay program,

unless they are repositioned with an INSERT statement.
7. The LIBRARY control statement is not processed immediately. If the same symbol appears on more

than one LIBRARY statement, only the last occurrence is used.
8. Specifying an external reference for restricted no-call or never-call by means of the LIBRARY

statement prevents the external reference from being resolved by automatic inclusion of the necessary
module from an automatic call library; it does not prevent the external reference from being resolved if
the module necessary to resolve the reference is specifically included or is included as part of an input
module.

9. The LIBRARY statement is not allowed in a data set that is included from an automatic call library.

Examples
Example 1

This example shows three uses of the LIBRARY statement:

// EXEC PGM=IEWBLINK,PARM='LET,XREF,LIST'
//TESTLIB DD DSNAME=PROJECT.TESTLIB,DISP=SHR
 .
 .
 .
//SYSLIN DD *
 LIBRARY TESTLIB(DATE,TIME),(FICACOMP),*(STATETAX)
/*

As a result, members DATE and TIME from the additional library TESTLIB are used to resolve external
references. FICACOMP and STATETAX are not resolved; however, because the references remain
unresolved, the LET option must be specified on the EXEC statement if the module is to be marked
executable. In addition, STATETAX will not be resolved in any subsequent reprocessing by the binder.

Example 2

Here is a sequence of LIBRARY statements to help explain the statement's rules.

In the following example, foo and bar can be resolved from MYLIB, but nothing else can be resolved from
it:

 LIBRARY MYLIB(foo)
 LIBRARY MYLIB(bar)
* If we stop here both foo and bar can be resolved from MYLIB,
* but nothing else can be resolved from it.
 LIBRARY MYLIB
* Now MYLIB can be used to resolve any symbols.
 LIBRARY (bar)
* "bar" can no longer be resolved from MYLIB or anywhere else.
 LIBRARY MYLIB
* This doesn't change anything. MYLIB can still be used to resolve
* any symbol other than "bar".

Control statement reference

Chapter 7. Binder control statement reference 119

 LIBRARY MYLIB(bar)
* "bar" can once again be resolved from MYLIB.

MODE statement
The MODE statement specifies the addressing mode and the residence mode for all the entry points into
the program module (the main entry point, its true aliases, and all the alternate entry points). The syntax
of the MODE statement is:

MODE modespec[,modespec]

modespec
One or both of the following:

• The designation of an addressing mode for the output program object or load module by one of the
following:

– AMODE(24)
– AMODE(31)
– AMODE(64)
– AMODE(ANY)
– AMODE(MIN)

Specifying AMODE(MIN) causes the most restrictive AMODE of all control sections within the
program module to be assigned.

See “AMODE: Addressing mode option” on page 77 for more information about specifying AMODE.
• The designation of residence mode for the output program object or load module by one of the

following:

– RMODE(24[,INITIAL|COMPAT])
– RMODE(ANY|31[,INITIAL|COMPAT])
– RMODE(64[,INITIAL|COMPAT])
– RMODE(MIN,[INITIAL|COMPAT])
– RMODE(SPLIT)

See “RMODE: Residence mode option” on page 92 for more information about specifying RMODE.

Placement: The MODE control statement can be placed before, between, or after object modules or other
control statements. It must precede the NAME statement for the module, if one is present.

Note:

1. If more than one MODE control statement is encountered in the binding of a program object or load
module, the last valid AMODE and RMODE specifications are used.

2. The binder treats AMODE and RMODE values independently until they are required for output
processing. At this time the combination of AMODE and RMODE values for each entry point are
checked for conflict. See “AMODE and RMODE combinations” on page 31 for information on AMODE
and RMODE compatibility.

3. The addressing mode assigned by the MODE control statement overrides the separate addressing
modes found in the ESD data for the control sections within which the entry points are located. The
addressing mode assigned by the MODE control statement overrides the addressing mode assigned by
the AMODE parameter in the PARM field of the EXEC statement. A specified AMODE value applies to all
entry points in the module, and is stored in all generated directory entries.

4. The residence mode assigned by the MODE control statement overrides the residence mode
accumulated from the input control sections and private code. The residence mode assigned by the
MODE control statement also overrides the residence mode assigned by the RMODE parameter in the
PARM field of the EXEC statement.

Control statement reference

120 z/OS: z/OS MVS Program Management: User's Guide and Reference

A specified RMODE value applies to the entire module for load modules and single-segment program
objects, unless the SCTR (scatter) option has been specified. For multiple-segment program objects,
the specified RMODE value applies to all the segments containing initial load classes, unless the scope
value is specified as COMPAT. With COMPAT, the specified RMODE value is applied only to the initial
load segment containing the entry point(s); any other initial load segments retain the RMODE value as
determined by the binder. See “Residence mode” on page 30 for details. In all cases, the RMODE will
be stored in all generated directory entries.

Example
In this example, an output module, NEWMOD, is created. It is given an alias of TESTMOD, the residence
mode for the module is ANY, and the addressing mode for both the main entry point, NEWMOD, and the
true alias, TESTMOD, is 31. The addressing and residence modes allow the program to be loaded into
31-bit addressable virtual storage.

//SYSLMOD DD DSN=USER.TESTPROG,DISP=OLD
//SYSLIN DD *
 .
 .
 .
 MODE AMODE(31),RMODE(ANY)
 ALIAS TESTMOD
 NAME NEWMOD
/*

NAME statement
The NAME statement specifies the name of the program module created from the preceding input
modules, and serves as a delimiter for input to the program module. As a delimiter, the NAME statement
allows you to create more than one program module in one binder step. The NAME statement can also
indicate that the module replaces an identically named module in the output program library. The syntax
of the NAME statement is:

NAME membername[(R)]

membername
The name to be assigned to the program object or load module created from the preceding input
modules.

(R)
Indicates that this program module replaces an identically named module in the output module
library, and that any aliases specified on ALIAS statements replace identically named aliases. If the
module is not a replacement, (R) is ignored.

Placement: The NAME statement is placed after the last input module or control statement to be used for
the output module.

Note:

1. Any ALIAS statement must precede the NAME statement.
2. If you are binding a program object, only the aliases specified on ALIAS statements are kept for the

program object. Any other aliases for the replaced program object are deleted from the directory of the
program library. If you are binding load modules, any aliases for the replaced load modules that are
not themselves replaced are kept and point to the old load module.

3. If a name is not specified either on the NAME statement or on the DD statement for the SYSLMOD data
set, and the SYSLMOD data set is a PDS or PDSE, the binder will assign the name TEMPNAMn, using
values 0-9 for n. The binder will not save the module if the names TEMPNAM0 through TEMPNAM9
are already in use. This assignment of temporary names does not take place if the SYSLMOD data set
is a z/OS UNIX file. Instead, the binder issues an error message stating its inability to save the output
module.

Control statement reference

Chapter 7. Binder control statement reference 121

4. If the (R) value is not specified, and a member of the same name already exists in the output module
library, the binder will not replace the module or save it under another name.

5. Normally, the binder does not replace an executable module with a nonexecutable module even if
the (R) value is specified. You can specify the STORENX option to override this default action. See
“STORENX: Store not-executable module” on page 95 for a further description.

6. A NAME statement found in a data set other than the primary input data set is invalid. The statement is
ignored.

7. The IEWBLDGO binder entry point does not accept a NAME statement.
8. If you do not specify the (R) parameter when processing a z/OS UNIX file, the binder issues an

informational message.
9. When a NAME statement is not used and a member name is supplied on the SYSLMOD DD statement,

the behavior is to REPLACE (just as when using NAME with (R), or SAVEW with REPLACE=YES).

Example
In this example, two output modules, RDMOD and WRTMOD, are produced by the binder in one job step:

//SYSLMOD DD DSNAME=PROJECT.AUXMODS,DISP=SHR
//NEWMOD DD DSNAME=&&WRTMOD,DISP=OLD
//SYSLIN DD DSNAME=&&RDMOD,DISP=OLD
// DD *
 NAME RDMOD(R)
 INCLUDE NEWMOD
 NAME WRTMOD(R)
/*

The first time modules RDMOD and WRTMOD are created in the module library AUXMODS, the (R) option
is ignored. When the same modules are rebound using the same control statements, the (R) option results
in a replacement of the old modules.

ORDER statement
The ORDER statement indicates the sequence in which control sections or named common areas appear
in the output program object or load module. The control sections or named common areas appear in
the sequence they are specified on the ORDER statement. If this is a section with multiple text classes,
all elements in the section are ordered. Optionally, (P) may be specified to indicate page alignment, whcih
applies to all elements in the section (with the exception of those elements in merge classes).

The syntax of the ORDER statement is:

ORDER section name[(P)][,...]

section name
The name of the section to be sequenced.

(P)
Indicates the starting address of the control section or named common area is on a page boundary
within the program object or load module. The control sections or common areas are aligned on 4KB
page boundaries, unless the ALIGN2 option has been specified (in which case alignment is on 2KB
page boundaries). If this is a section with multiple text classes, all elements in the section (with the
exception of those elements in merge classes) are aligned on a page boundary.

Placement: An ORDER statement can usually be placed before, between, or after object modules or other
control statements.

Note:

1. When multiple ORDER statements are used, their sequence further determines the sequence of the
control sections or named common areas in the output module. If the same common area or control
section is listed on more than one ORDER statement, the binder uses the sequence stated on the last
request.

Control statement reference

122 z/OS: z/OS MVS Program Management: User's Guide and Reference

2. The control sections and common areas named as operands can appear in either the primary input or
the automatic call library, or both.

3. If a control section or a named common area is changed by a CHANGE or REPLACE control statement
and sequencing is desired, specify the new name on the ORDER statement.

Example
In the statements shown in Figure 22 on page 123, the control sections in the module LDMOD are
arranged by the binder according to the sequence specified on ORDER statements. The page boundary
alignments and the control section sequence made as a result of these statements are shown in Figure 22
on page 123. Assume each control section is less than 1KB in length.

Figure 22. Example of an output module for the ORDER statement

OVERLAY statement
We do not recommend using the INSERT and OVERLAY statements for program objects. The binder
supports the overlay format for compatibility only. For more information on the use of the OVERLAY
statement, see Appendix D, “Designing and specifying overlay programs,” on page 191.

The OVERLAY statement indicates the beginning of an overlay segment and, optionally, also of an overlay
region. Because a segment or a region is not named, you identify it by giving its origin (or load point) a
symbolic name. This name is then used on an OVERLAY statement to signify the start of a new segment
beginning at that origin. The syntax of the OVERLAY statement is:

OVERLAY symbol[(REGION)]

symbol
The symbolic name assigned to the origin of a segment. This symbol is not related to external symbols
in the module.

Control statement reference

Chapter 7. Binder control statement reference 123

(REGION)
Specifies the origin of a new region, as well as a segment.

Placement: The OVERLAY statement must precede the first module of the next segment, the INCLUDE
statement specifying the first module of the segment, or the INSERT statement specifying the control
sections to be positioned in the segment.

Note:

1. The OVLY option must be specified on the EXEC statement when OVERLAY statements are to be used.
2. The sequence of OVERLAY statements should reflect the order of the segments in the overlay structure

from top to bottom, left to right, and region by region.
3. No OVERLAY statement should precede the root segment.

Example
The following OVERLAY and INSERT statements specify the overlay structure in Figure 23 on page 124.

// EXEC PGM=IEWBLINK,PARM='OVLY,XREF,LIST'
⋮
//SYSLIN DD DSNAME=&&OBJ,...
// DD *
 INSERT CSA
 OVERLAY ONE
 INSERT CSB
 OVERLAY TWO
 INSERT CSC
 OVERLAY TWO
 INSERT CSD
 OVERLAY ONE
 INSERT CSE,CSF
 OVERLAY THREE(REGION)
 INSERT CSH
 OVERLAY THREE
 INSERT CSI
/*

Figure 23. Example of an overlay structure for the OVERLAY statement

Control statement reference

124 z/OS: z/OS MVS Program Management: User's Guide and Reference

PAGE statement
The PAGE statement causes a section in a program object or load module to be loaded on a 4K page
boundary. If this is a section with multiple text classes, all elements in the section (with the exception of
those elements in merge classes) will be aligned on a page boundary.

The syntax of the PAGE statement is:

PAGE sectionname…

section name
The name of the section to be aligned on a page boundary.

Placement: The PAGE statement can be placed before, between, or after object modules or other control
statements.

Note:

1. If a section is changed by a CHANGE or REPLACE control statement, and page alignment is wanted,
specify the new name in the PAGE statement.

2. The sections named can appear in either the primary input or the automatic call library, or both.
3. PAGE does not affect the alignment of parts or pseudo registers in the section.
4. If the ALIGN2 option has been specified, sections listed on the PAGE statement will be aligned on 2 KB

boundaries.

Example
In this example, the sections in the module PRGMOD are aligned on page boundaries as specified in the
following PAGE statement:

PAGE ALIGN,BNDRY4K,EIGHTK

The job control statements and binder control statements as well as the output program object or load
module are shown in Figure 24 on page 126. Assume each control section is 3KB in length.

Control statement reference

Chapter 7. Binder control statement reference 125

Figure 24. Example of an output module for the PAGE statement

RENAME statement
The RENAME statement allows for the renaming of specific symbols. An old symbol name can be renamed
to a new symbol name that can then be used to resolve references when binding a module. The rename
requests take place only after the binder attempts to resolve the original names. The new names are then
used during the binder's final autocall in order to resolve any references previously unresolved.

The syntax of the RENAME statement is:

RENAME oldname,newname

oldname
The symbol to be renamed. Its maximum length is 32767 bytes.

newname
The symbol name to which the oldname should be changed. Its maximum length is 32767 bytes.

To continue either of the symbols on multiple lines, code a nonblank character in column 72 of each line.
Columns 73 to 80 of each line are ignored.

Placement: The RENAME statement can be placed before, between, or after object modules or other
control statements. They do not take effect, however, until an AUTOCALL statement is processed, or, in
the absence of AUTOCALL statements, until after the binder's final autocall processing takes place.

Note:

1. The only immediate result of the RENAME control statement is that the rename request is added to the
binder's list of such requests. RENAME processing takes place only after all possible references have
been resolved with the names as they were specified on input.

2. This statement is the functional equivalent of the prelinker's RENAME control statement. It should
be noted, however, that the SEARCH parameter of the prelinker's statement is not supported by the
binder.

Control statement reference

126 z/OS: z/OS MVS Program Management: User's Guide and Reference

3. RENAME will only affect symbols that are marked as renameable. Since traditional object modules
and load modules do not support the renameable attribute, RENAME will have no effect on symbols
originating from modules in those formats. The renameable attribute is supported by GOFF, and it is
also set for XSD records with the "mapped" bit off (from XOBJ modules).

4. RENAME will have no effect on symbols originating from PR records (pseudoregister or part
references).

5. RENAME will have no effect on imported symbols.

Example
⋮
//TAXES DD PATH='/sl/finance/app1/dlltxs',PATHDISP=(KEEP,KEEP)
//SYSLIB DD DSNAME=PROJECT.OBJLIB,DISP=SHR
//SYSLIN DD *
 INCLUDE TAXES
 RENAME Compute_98_Taxes_Schedule2,Taxes98
⋮
/*

REPLACE statement
The REPLACE statement is used to replace or delete external symbols. The external symbol can name a
section, an entry point, an external reference, or a pseudoregister.

One section can be replaced with another. All references within the input module to the old section
are changed to the new section. Any external references to the old section from other modules are
unresolved unless changed.

A section can be deleted. The section name is deleted from the external symbol dictionary. External
references from other modules to a deleted section also remain unresolved. If there are references to any
address within a deleted section, the section name in changed to an external reference.

If the first symbol in the REPLACE statement refers to a symbol that is not a section or common area, the
results will be the same as if a CHANGE statement were coded. The first symbol is replaced by the second
symbol. The first symbol is deleted when the second symbol is omitted.

The syntax of the REPLACE statement is:

REPLACE [-IMMED,]externalsymbol1[(externalsymbol2)]…

-IMMED
causes REPLACE to operate against the modules that have already been included in the module being
built rather than against the next input module .

externalsymbol1, externalsymbol2
Names an external symbol to be replaced or deleted. If you only specify externalsymbol1, the
external symbol is deleted. If you specify externalsymbol2 in parentheses following externalsymbol1,
externalsymbol1 is replaced by externalsymbol2. You can delete or replace any number of external
symbols with one REPLACE statement.

Placement: The REPLACE statement must immediately precede either the module containing the
external symbol to be replaced or deleted, or the INCLUDE statement specifying the module. The scope of
the REPLACE statement is across the immediately following program or object module.

Note:

1. If during automatic library call the replacement symbol is still undefined in the module, the binder
attempts to resolve the reference from SYSLIB.

2. When a section containing unresolved external references is deleted, the binder removes these
references from the ESDs.

3. When using the binder, if no INCLUDE statement follows the REPLACE statement, the request is
ignored.

Control statement reference

Chapter 7. Binder control statement reference 127

4. If the REPLACE statement appears in a module included from a data set in an automatic call library, it
will be ignored if it is not followed by a module from the same data set.

5. Restrictions apply whenever both CHANGE and REPLACE operations are performed on the same
included program or object module. You might need to delete one of several sections and at the same
time rename references to that section (all within the scope of the same INCLUDE) to some other
external symbol. To change more than one entry name within the original section to a single new
external symbol, you must specifically include the section that resolves the new external symbol, prior
to the change operation.

6. When using a REPLACE statement to replace or delete a named common area, the common area must
be defined in the first program or object module following the REPLACE statement.

7. When deleting an entry name, if there are any references to it within the same input module, the entry
name is changed to an external reference.

8. The -IMMED option is not allowed during autocall processing.
9. externalsymbol1 may be specified using the syntax $PRIVxxxxxx (where xxxxxx is 6 hexadecimal

digits) to represent an unnamed symbol. To determine the appropriate value to use it, it is necessary to
rebind the single module and produce a MAP and/or XREF. The $PRIVxxxxxx symbol names from the
binder output can be used in REPLACE statements on the very next bind of the single module. Names
$PRIV000000 - $PRIV00000F are reserved by the Binder and may not be used as externalsymbol1.

Example
In this example, assume that section INT7 is in member LOANCOMP and that section INT8, which is
to replace INT7, is in data set &&NEWINT. Also assume that section PRIME in member LOANCOMP is
deleted.

//NEWMOD DD DSNAME=&&NEWINT,DISP=(OLD,DELETE)
//OLDMOD DD DSNAME=PROJECT.PROGLIB,DISP=SHR
//SYSLIN DD *
 ENTRY MAINENT
 INCLUDE NEWMOD
 REPLACE INT7(INT8),PRIME
 INCLUDE OLDMOD(LOANCOMP)
 NAME LOANCOMP(R)
/*

As a result, INT7 is removed from the input module described by the OLDMOD DD statement, and INT8
replaces INT7. All references to INT7 in the input module now refer to INT8. Any references to INT7 from
other modules remain unresolved. If there are no references to PRIME in LOANCOMP, section PRIME is
deleted; the section name is also deleted from the external symbol dictionary.

SETCODE statement
The SETCODE statement assigns a specified authorization code to the output load module or program
object. The authorization code is placed in the directory entry for the output load module or program
object.

The binder allows any numeric value between 0 and 255. The MVS Authorized Program Facility (APF)
determines that a module is authorized if the authorization code has a value of 1. The module is
unauthorized if the authorization code has any other value. Refer to z/OS MVS Programming: Authorized
Assembler Services Guide for additional information on the APF.

The syntax of the SETCODE statement is:

SETCODE AC(authorizationcode)

authorizationcode
A decimal number from 0 to 255. Specifying AC() results in an authorization code of zero.

Placement: A SETCODE statement can be placed before, between, or after object modules or other
control statements. It must precede the NAME statement for the module, if one is present.

Control statement reference

128 z/OS: z/OS MVS Program Management: User's Guide and Reference

Note:

1. The authorization code assigned by the SETCODE statement overrides the authorization code assigned
by the AC parameter in the PARM field of the EXEC statement.

2. If more than one SETCODE statement is encountered in the bind of a load module or program object,
the last valid authorization code assigned is used.

3. To provide APF authorization of a z/OS UNIX file you must set the authorization code using SETCODE,
but you must also set extended attributes for the file using SETOPT.

Example
In this example, an authorization code of 1 is assigned to the output module MOD1.

//LKED EXEC PGM=IEWBLINK
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DSNAME=SYS2.LINKLIB,DISP=OLD
//SYSLIN DD DSNAME=&&LOADSET,DISP=(OLD,PASS)
// DD *
 SETCODE AC(1)
 NAME MOD1(R)
/*

SETOPT statement
The SETOPT statement allows you to set options at the module level, rather than the job step level as in
the binder batch parameter string. This allows you to set module attributes when a number of modules
are being bound separately in a single MVS job step.

SETOPT accepts a string of parameter specifications as if it had been entered on the PARM parameter
of the EXEC JCL statement. The options you specify are valid only until after the next NAME control
statement is processed or until an end-of-file condition is detected in SYSLIN.

The syntax of the SETOPT statement is:

SETOPT PARM(parm)

PARM(parm)
Accepts a string of parameter specifications as if it had been entered on the PARM parameter of the
EXEC JCL statement. It follows the same syntax rules as the binder batch execution parameter string.
The following batch options cannot be set using the SETOPT control statement:

• COMPAT
• EXITS
• LINECT
• MSGLEVEL
• OPTIONS
• PRINT
• SIZE
• TERM
• TRAP
• WKSPACE

In addition, the single keyword form of REUS cannot be used with SETOPT.

See Chapter 6, “Binder options reference,” on page 69 for more information on the options that can be
specified in the PARM field of the EXEC statement.

Control statement reference

Chapter 7. Binder control statement reference 129

SETSSI statement
The SETSSI statement specifies hexadecimal information to be placed in the system status index of the
directory entry for the output module. The syntax of the SETSSI statement is:

SETSSI (ssi-info)

ssi-info
Represents 8 hexadecimal characters (0 through 9 and A through F) to be placed in the 4-byte system
status index of the output module library directory entry.

Placement: The SETSSI statement can be placed before, between, or after object modules or other
control statements. If one is present, it must precede the NAME statement for the module.

Note:

1. The SETSSI statement overrides any SSI option included in the PARM field of the EXEC statement.
2. A SETSSI statement should be provided whenever an IBM-supplied program module is reprocessed by

the binder. If the statement is omitted, no system status index information is present.

Control statement reference

130 z/OS: z/OS MVS Program Management: User's Guide and Reference

Chapter 8. Interpreting binder listings

This appendix contains an overview of the binder output. This output is written to SYSPRINT, SYSLOUT, or
another ddname assigned to the PRINT file (using the FILES parameter) on the STARTDialog call. Except
where noted, all outputs apply to both batch entry points (IEWBLINK and IEWBLDGO) and to both load
modules and program objects.

Linkage editor and batch loader outputs are described in “Interpreting linkage editor output” on page 167
and “Interpreting batch loader output” on page 172.

The output data is divided into a number of categories, some that always appear in the output listing and
others that appear depending on the options selected. The categories are:

• Header
• Input Event Log
• Private Section List
• Program Module Map
• Renamed Symbol Table
• Cross-Reference Table
• Imported and Exported Symbol Table
• Operation Summary
• Long-symbol Cross-Reference Table
• Short Mangled Name Report
• Abbreviation/Demangled Name Report
• DDname to pathname cross reference
• Message Summary Report
• Removed Classes and Sections Report

Header
The header is written at the beginning each section of the output. The header contains information on the
release and modification level and on how the binder was invoked.

• Name, version, release, and modification level of the binder
• Time, day, and date of invocation
• Job name, step name, program name, and (if one has been used) procedure name when invoked by

use of a batch interface. When invoked via the application programming interface, the binder prints the
contents of the CALLERID field from the STARTD call.

• Binder entry point name.

Input event log
The input event log is a chronological log of the events that took place during the input phase of binder
operation. Its presence is controlled by the LIST option. If LIST(OFF) or NOLIST is specified, no input
event log is generated. If LIST(STMT), LIST, or LIST(SUMMARY) is specified, only input events pertaining
to control statements are logged. If LIST(NOIMP) is specified, messages pertaining to the import control
statement are suppressed, while those generated by other control statements and binder calls continue
to be logged. When processing DLLs that contain a large number of IMPORT control statements in their
side files, this option helps to reduce the number of messages logged while still providing information
about other binder processing. If LIST(ALL) is specified, all input events are logged (such as those
initiated by binder function calls as well as those initiated by control statements).

Binder listings

© Copyright IBM Corp. 1991, 2021 131

Figure 25 on page 132 contains a sample input event log. The log can include:

• The list of processing options used in the binder invocation.
• Errors with the invocation parameter (binder or batch loader options)
• Line by line summary of functions performed during the input phase. Each bind operation is treated

separately: a control statement is printed, followed by a summary of the function performed and the
complete names of the objects operated upon.

• Errors encountered during the input phase.

z/OS V1 R5 BINDER hh:mm:ss ddddd mmmmm dd, yyyy
BATCH EMULATOR JOB(TESTHIGH) STEP(BIND1) PGM= IEWL
IEW2278I B352 INVOCATION PARAMETERS - LIST(ALL),MAP,XREF,NCAL
IEW2322I 1220 1 INCLUDE MYLIB(PROGBCAD)
IEW2308I 1112 SECTION PROGBCAD HAS BEEN MERGED.
IEW2322I 1220 2 INCLUDE MYLIB(PROGBCDS)
IEW2308I 1112 SECTION PROGBCDS HAS BEEN MERGED.
IEW2322I 1220 3 INCLUDE MYLIB(PROGBCOV)
IEW2308I 1112 SECTION PROGBCOV HAS BEEN MERGED.
IEW2322I 1220 4 MODE AMODE(31),RMODE(ANY)
IEW2322I 1220 5 ENTRY PROGDCTL
IEW2322I 1220 6 ALIAS PROGIND
IEW2322I 1220 7 ALIAS PROGSTAK
IEW2322I 1220 8 NAME PROGIND0(R)
IEW2454W 9203 SYMBOL PROGXCLW UNRESOLVED. NO AUTOCALL (NCAL) SPECIFIED.
IEW2454W 9203 SYMBOL PROGXCWL UNRESOLVED. NO AUTOCALL (NCAL) SPECIFIED.

Figure 25. Sample binder input event log

Note: In the binder, message IEW2308I replaces the previous message IEW2307I.

Private section list
Figure 26 on page 132 contains a sample private section list report.

This report will appear immediately before the module map if LISTPRIV=YES was specified as a binder
option and if there are any unnamed sections.

*** U N N A M E D S E C T I O N ***

 ------- SOURCE -------
 NAME DDNAME SEQ MEMBER

 $PRIV000010 LIB1 01 BTEST10A

*** E N D O F U N N A M E D S E C T I O N S ***

Figure 26. Sample binder private section list report

Program module map
A map of the program module is generated if the MAP option was specified for the run. Figure 27 on
page 134 and Figure 29 on page 136 contain sample program module maps (one for a simple module
and one for an overlay module). Each text class is mapped showing each section or external label on a
separate line and INCLUDING information about the source of the section. A "SOURCE" column indicates
the data set (by ddname and concatenation sequence number) and member from which each section was
included. Map entries are sequenced by module location within class or overlay segment.

The following describes the detailed line information included in the module map:

• SECTION OFFSET - The location of the section or label relative to the start of the element (class section)
in which it is defined. Section offset is printed only for labels, not sections.

• CLASS OFFSET/MODULE OFFSET - The location of the section or label relative to the start of the class or
overlay segment.

Binder listings

132 z/OS: z/OS MVS Program Management: User's Guide and Reference

• NAME - The name of the entity being mapped. An asterisk preceding the name indicates that the section
was included during the autocall phase.

Some section types do not have external names and are displayed as follows:

– $SEGTAB - Overlay segment table
– $ENTAB - Overlay segment entry table
– $PRIVxxxxxx - Private code where xxxxxx is a unique hexadecimal value starting at X'000001'
– $BLANKCOM - Blank (unnamed) common

• TYPE - The label type of the entity being mapped:

– CSECT - Control section
– LABEL - External label
– COMMON - Named or unnamed common
– SEGTAB - Overlay segment table
– ENTAB - Overlay segment entry table

• LENGTH - The length in hexadecimal bytes of the section or segment. If TYPE is LABEL, this field is
blank.

• SOURCE - The ddname, concatenation sequence number, and optionally the member name from which
this section is included.

When reporting the source of a Section brought in from an archive file, the Binder Map will be changed
to list the name of the archive file member from which the Section was included (in the column headed
MEMBER). For symbols resolved via the C370LIB directories, the member name listed will be the PDS/
PDSE member name, not the name of the symbol.

The last item in the module map is usually the data set summary. It contains one entry for each
combination of ddname and concatenation sequence number referenced in the module map and displays
the corresponding data set name. These 8-byte pseudo ddnames are used in the module map and other
reports in order to improve the reports' readability. The data set summary cross-references the pseudo
ddnames to their corresponding z/OS UNIX file names. A pseudo ddname is of the form '/000000n',
where 'n' is a number that increases as new z/OS UNIX files are processed by the binder.

Data sets and libraries from which no members were included do not appear in the data set summary.

If any symbols appear as references in the symbol table (ESD) of one or more input modules, but are not
the target of any references in the code, an unreferenced symbol table will be printed. The symbols in this
table will not appear in the cross-reference listing but if they are unresolved, may result in error messages
being issued by the binder.

Simple module
The following figure illustrates a simple module, containing one text class (B_TEXT) and the
pseudoregister vector (B_PRV). Each text class begins with a class header containing the class name,
its length in bytes, and significant bind and load attributes of the class:

• CAT indicates that the class is a concatenation of all participating sections.
• LOAD indicates that the class will be loaded when the module is loaded.
• RMODE=ANY indicates that this class can be placed above the 16 MB line.

All CAT-type text classes consist of sections (CSECTs) and labels.

The second class, B_PRV, represents the pseudoregister vector (PRV), if one is present. It replaces the
special PRV display that appeared in earlier releases of the binder. Its attributes are:

• MRG indicates that the class consists of parts, which are merged by part name.
• NOLOAD means that the class will not be loaded with the module.

Binder listings

Chapter 8. Interpreting binder listings 133

There are several differences between the MRG and CAT classes. Since all pseudoregisters are located
in the same section, section offset and class offset are identical; only one is printed. The entity is PART
rather than CSECT or LABEL, each part representing a single pseudoregister or external data item. Finally,
SOURCE is not displayed, since all parts are created by the binder.

z/OS V1 R5 BINDER hh:mm:ss ddddd mmmmm dd, yyyy
BATCH EMULATOR JOB(PMSBC321) STEP(BIND2) PGM= IEWBLINK
IEW2278I B352 INVOCATION PARAMETERS - LIST(ALL),NCAL,LET,OVLY,MAP,XCAL

 *** M O D U L E M A P ***

 CLASS B_TEXT LENGTH = A20 ATTRIBUTES=CAT, LOAD, RMODE=ANY
 OFFSET = 0 IN SEGMENT 001 ALIGN = DBLWORD

 SECTION CLASS ------- SOURCE --------
 OFFSET OFFSET NAME TYPE LENGTH DDNAME SEQ MEMBER

 0 CEESTART CSECT 7C OBJ 01 C955A03

 80 EDCINPL * CSECT 28 /0000001 01 EDCINPL

 A8 STRCMP * CSECT 10 SYSLIB 02 STRCMP

 B8 PRINTF * CSECT 10 SYSLIB 02 PRINTF

 C8 EDC@@1FC * CSECT 10 SYSLIB 06 exit
 0 C8 exit LABEL
 0 C8 EDC#EXIT LABEL

 D8 CEESG003 * CSECT 128 SYSLIB 06 exit

 200 puts * CSECT 10 SYSLIB 06 puts

 210 printf * CSECT 10 SYSLIB 06 printf

 220 CEEROOTA * CSECT 1F8 SYSLIB 02 CEEROOTA

 418 CEEBETBL * CSECT 28 SYSLIB 01 CEEBETBL

 440 CEEBPUBT * CSECT 70 SYSLIB 02 CEEBPUBT

 4B0 CEEBTRM * CSECT B0 SYSLIB 02 CEEBTRM

 560 CEEBLLST * CSECT 60 SYSLIB 02 CEEBLLST
 10 570 CEELLIST LABEL

 5C0 CEEBINT * CSECT 8 SYSLIB 02 CEEBINT

 5C8 CEEBPIRA * CSECT 280 SYSLIB 02 CEEINT
 0 5C8 CEEINT LABEL
 0 5C8 CEEBPIRB LABEL
 0 5C8 CEEBPIRC LABEL

 848 CEECPYRT * CSECT F0 SYSLIB 02 CEEINT

 938 CEEARLU * CSECT B8 SYSLIB 02 CEEARLU

 9F0 CEETGTFN * CSECT 10 SYSLIB 01 CEETGTFN

 A00 CEETLOC * CSECT 20 SYSLIB 01 CEETLOC

Figure 27. Sample binder module map (Part 1 of 2)

Binder listings

134 z/OS: z/OS MVS Program Management: User's Guide and Reference

CLASS B_PRV LENGTH= 18 ATTRIBUTES=MRG,NOLOAD

 CLASS
 OFFSET NAME TYPE LENGTH SECTION

 0 GFLGA PART 1
 1 GFLGE PART 1
 2 GFLGC PART 1
 3 GFLGC PART 1
 4 COUNTF PART 2
 8 MASTER PART 4
 10 B_TOKEN PART 8

 *** DATA SET SUMMARY ***

 DDNAME CONCAT FILE IDENTIFICATION
 OBJ 01 DFPFT.WORKLIB.OBJECT
 /0000001 01 /DFPFT/APP1/EDCINPL
 SYSLIB 01 DFPFT.WORKLIB.POSIX.RTL.UT2.SCEELKED
 SYSLIB 02 DFPFT.WORKLIB.CEE.V1R7M0.SCEELKED
 SYSLIB 06 A860059.SCEELKED.LONGNAME

 *** SYMBOL REFERENCE NOT ASSOCIATED WITH ANY ADCON ***

TYPE SCOPE NAME
 ER M WEAK
 ER L DANGLER

 *** E N D O F M O D U L E M A P ***

Figure 28. Sample binder module map (Part 2 of 2)

Figure 29 on page 136 shows an overlay format module map, containing three overlay segments and a
pseudoregister vector. Note that all text is contained in class B_TEXT, a requirement of overlay programs.

Binder listings

Chapter 8. Interpreting binder listings 135

z/OS V1 R5 BINDER hh:mm:ss ddddd mmmmm dd, yyyy
BATCH EMULATOR JOB(TESTHIGH) STEP(BIND2) PGM= IEWBLINK
IEW2278I B352 INVOCATION PARAMETERS - LIST(ALL),NCAL,LET,OVLY,MAP,XCAL

 *** M O D U L E M A P ***

CLASS: B_TEXT

 LENGTH= 11848 ATTRIBUTES = CAT, LOAD, RMODE 24
 OFFSET= 0 IN SEGMENT 001 ALIGN = DBLWORD

SEGMENT 001 REGION 001 LENGTH: A370 ATTRIBUTES: OVERLAY RMODE: 24

 SECTION MODULE ------- SOURCE ------
 OFFSET OFFSET NAME TYPE LENGTH DDNAME SEQ MEMBER

 0 PROGBCAD CSECT 1868 MYLIB 1 PROGBCAD

 1868 PROGBCDS CSECT 13E8 MYLIB 1 PROGBCDS

 2C50 PROGBCOV CSECT 190 MYLIB 1 PROGBCOV

 2DE0 PROGBIND CSECT C30 SYSLIB 1 PROGBIND

 3A10 PROGBRAC CSECT 15D0 SYSLIB 2 PROGBRAC

 83F8 PROGBUPA CSECT 1A20 SYSLIB 2 PROGBUPA

 9E18 PROGPMMB CSECT 528 SYSLIB 2 PROGPMMB
 424 A23C PROGPARB LABEL

 A340 PROGCDEF CSECT 3F0 SYSLIB 1 PROGCDEF

SEGMENT 002 REGION 001 LENGTH: 32E0 ATTRIBUTES: OVERLAY RMODE: 24

 SECTION MODULE ------- SOURCE ------
 OFFSET OFFSET NAME TYPE LENGTH DDNAME SEQ MEMBER

 0 PROGMX21 CSECT 868 SYSLIB 1 PROGBCAD

 868 PROGGROV CSECT 3E8 SYSLIB 1 PROGBCDS

 C50 PROGWYY CSECT 490 MYLIB 1 PROGBCOV

 10E0 PROGR2D2 CSECT C30 MYLIB 1 PROGBIND

 1D10 PROGC3PO CSECT 15D0 MYLIB 1 PROGBRAC

Figure 29. Sample binder module map - Overlay (Part 1 of 2)

Binder listings

136 z/OS: z/OS MVS Program Management: User's Guide and Reference

z/OS V1 R5 BINDER hh:mm:ss ddddd mmmmm dd, yyyy
BATCH EMULATOR JOB(TESTHIGH) STEP(BIND2) PGM= IEWBLINK

SEGMENT 003 REGION 001 LENGTH: 3E38 ATTRIBUTES: OVERLAY RMODE: 24

 SECTION MODULE ------- SOURCE ------
 OFFSET OFFSET NAME TYPE LENGTH DDNAME SEQ MEMBER

 0 OBI_WAN CSECT 720 MYLIB 1 PROGBCAD

 720 JABBA CSECT 9A0 MYLIB 1 PROGBCDS

 10C0 STARWARS CSECT 440 MYLIB 1 PROGBCOV
 0 10C0 LUKE LABEL
 4 10C4 LEAH LABEL
 8 10C8 DARTH LABEL

 1500 YODA CSECT 2030 MYLIB 1 PROGBIND

 3530 CHEWBACA CSECT 904 MYLIB 1 PROGBRAC

CLASS: B_PRV LENGTH: D70 ATTRIBUTES: MRG, NOLOAD

 CLASS
 OFFSET NAME TYPE LENGTH

 0 INFILE PART 4
 4 OUTPUT1 PART 4
 8 WORK1 PART D56
 D60 SYSPRINT PART 4
 D68 MESSAGEH PART 8

 *** DATA SET SUMMARY ***

 DDNAME CONCAT FILE IDENTIFIER

 MYLIB 1 JONES.PROJECT6.LOADLIB
 SYSLIB 1 DEPT77.OBJLIB
 2 DEPT83.OBJLIB

 *** E N D O F M O D U L E M A P ***

Figure 30. Sample binder module map - Overlay (Part 2 of 2)

The removed classes and sections report
This report is printed when the STRIPSEC or STRIPCL option and the MAP option are specified. It is
printed at the end of the module map.

*** R E M O V E D C L A S S E S A N D S E C T I O N S ***

CLASS NAMES (ABBREV)
C_CDA

SECTION NAMES (ABBREV)
MYSECT
PGM2

*** E N D R E M O V E D C L A S S E S A N D S E C T I O N S ***

Renamed-symbol cross-reference table
The renamed-symbol cross-reference table is printed only if one or more names were renamed for
symbol resolution purposes. The table shows the correspondence between the new (renamed) and the
source symbols.

The binder normally processes symbols exactly as received from the compiler. However, certain symbolic
references generated by the C/C++ and other compilers can be renamed by the binder if they contain
long or mixed-case names ("L-names") and cannot be resolved by the L-name during autocall. During

Binder listings

Chapter 8. Interpreting binder listings 137

renaming, the L-name reference is replaced by its equivalent short name. Such replacements, whether
resolved or not, will appear in the Renamed-Symbol Table.

Figure 31 on page 138 depicts three renamed symbols, the last of which is differentiated as a part or
pseudoregister name.

*** RENAMED SYMBOL CROSS REFERENCE ***

RENAMED SYMBOL
 SOURCE SYMBOL

 function9_40__FPfPi
 function9_xxxxxxxxx20xxxxxxxx30xxxxxxxx4__FPfPi

 function2_31__sqrt
 function2_xxxxxxxxx20xxxxxxxx3__sqrt

+function7_41__FPfPi
 function7_xxxxxxxxx20xxxxxxxx30xxxxxxxx4__FPfPi

+ = PART OR PSEUDO REG
 *** END OF RENAMED SYMBOL CROSS REFERENCE ***

Figure 31. Sample binder renamed-symbol cross-reference

Cross-reference table
A cross-reference table of the program module is provided if the XREF option was specified for the run.
The table does not depend upon nor does it automatically generate a module map.

The table contains one entry for each address constant in the module. The left half of the table describes
the reference (address constant), showing module location, section name, section offset, and address
constant type. The right half of the table describes the external symbol being referenced. Table entries
appear in the same sequence as the location of the address constants within the overlay segment.

Figure 32 on page 139 shows a sample cross-reference table. The columns contain the following
information:

• CLASS OFFSET - The offset of the address constant relative to the start of the class.
• SECT/PART - The name of the section or part containing the address constant.
• SEG - The segment number if the module is in overlay format.
• RG - The region number if the module is in overlay format.
• ELEMENT OFFSET - The offset of the address constant relative to the start of the section component of

the class.
• TYPE - Address constant type. One of six types may appear:

– V-CON - An adcon normally used for program branching
– A-CON - An adcon normally used for data reference
– Q-CON - An adcon that references a pseudoregister or other part by its offset within the class
– C-LEN - An adcon that will receive the cumulative length of the pseudoregister vector or other class.
– L TOKE - loader token: represents a unique instance of the module on DASD.
– R-CON - An adcon referencing the associated data (environment) of the target symbol.

• SYMBOL - The external symbol being referenced.
• SECTION - The name of the section containing the referenced symbol. If the symbol is unresolved or

nonrelocatable, this field is set to one of the following:

– $NON-RELOCATABLE - The address constant contains a nonrelocatable value, such as a
pseudoregister offset or PRV length.

– $UNRESOLVED - The referenced symbol is unresolved.
– $UNRESOLVED(W) - The referenced symbol is an unresolved weak external reference (WXTRN).

Binder listings

138 z/OS: z/OS MVS Program Management: User's Guide and Reference

– $NEVER-CALL - The referenced symbol was identified as never-call.
– $IMPORTED - The referenced symbol was dynamically resolved.

• SEG - The number of the overlay segment containing the referenced symbol if the module is in overlay
format.

• RG - The number of the overlay region containing the referenced symbol if the module is in overlay
format.

• ELEMENT OFFSET - The offset of the referenced symbol relative to the start of its containing element,
identified by section and class names.

• CLASS NAME - The target class.

The cross reference table contains one segment for each text class containing address constants. A
separator line containing the class precedes the adcon listing. Text classes that are not loaded with the
module, such as B_PRV, will never contain address constants and will not appear in this report.

 C R O S S - R E F E R E N C E T A B L E

 TEXT CLASS = B_TEXT

 --------------- R E F E R E N C E -------------------------- T A R G E T ---------------------
 CLASS ELEMENT | ELEMENT
 OFFSET SECT/PART (ABBREV) OFFSET TYPE | SYMBOL(ABBREV) SECTION (ABBREV) OFFSET CLASS NAME
 |
 48 SD1 48 A-CON | SD1 0 B-TEXT
 C4 SD1 C4 V-CON | LD1 SDX A8 B_TEXT
 126 SD1 126 Q-CON | GFLGA $NON-RELOCATABLE 0 B_PRV
 18E SD1 18E Q-CON | B-TOKEN $NON-RELOCATABLE 10 B_PRV
 1F6 SD1 1F6 Q-CON | GFLGC $NON-RELOCATABLE 2 B_PRV
 25E SD1 25E Q-CON | MASTER $NON-RELOCATABLE 8 B_PRV
 2C6 SD1 2C6 Q-CON | GFLGE $NON-RELOCATABLE 1 B_PRV
 32E SD1 32E Q-CON | COUNTF $NON-RELOCATABLE 4 B_PRV
 396 SD1 396 Q-CON | GFLGG $NON-RELOCATABLE 3 B_PRV
 3FC SD1 3FC CXD | $NON-RELOCATABLE B_PRV
 490 SD1 490 V-CON | SD2 SD2 0 B_TEXT
 568 SD2 48 A-CON | SD2 0 B_TEXT
 5E4 SD2 C4 V-CON | LD2 SDX AC B_TEXT
 644 SD2 124 V-CON | LD3 $PRIVATE 0 B_TEXT
 6A4 SD2 184 V-CON | LD4 $PRIVATE 4 B_TEXT
 704 SD2 1E4 V-CON | CM1 CM1 0 B_TEXT
 7B4 SD2 294 V-CON | CM1 CM1 0 B_TEXT
 860 SDX 48 A-CON | SDX 0 B_TEXT

Figure 32. Sample binder cross-reference table

Imported and exported symbol table
The Imported and Exported Symbol Table is part of the Module Summary Report. This table is printed if
binder options XREF and DYNAM(DLL) are specified and there are symbols to import or export.

The table shows the imported and exported symbols, whether they represent code or data, and, for
imported symbols, the name of the dynamic link library from which the symbol was imported.

A sample table is shown in Figure 33 on page 140. All imported symbols are listed first, followed by the
exported symbols. Within each group, symbols are arranged alphabetically. There are some differences
between the two groups:

• The member name or z/OS UNIX file name for the IMPORT is derived from the IMPORT control
statement.

• The member name for EXPORT is always the same as the symbol name, and so it is omitted.
• SYMBOL, DLL and MEMBER names longer than 16 bytes are abbreviated to unique 16-byte

replacements that are used in this and other tables. Figure 37 on page 143 shows the correspondence
between the long names and their abbreviations.

Binder listings

Chapter 8. Interpreting binder listings 139

• SOURCE: DDNAME, SEQ, and MEMBER indicates the source file, in the same way as the Module Map.
MEMBER is subject to Binder Long Symbol Abbreviation rules/processing.

 *** I M P O R T E D A N D E X P O R T E D S Y M B O L S ***

------- SOURCE --------
IMPORT/EXPORT TYPE SYMBOL DLL DDNAME SEQ MEMBER
------------- ------ ---------------- ------------ -------- --- -------
 EXPORT DATA hw
 *** E N D O F I M P O R T E D A N D E X P O R T E D S Y M B O L SS ***

Figure 33. Sample binder imported and exported symbols table

Operation summary
The operation summary is generated at the conclusion of the each save or load operation. The save
operation summary is produced by entry point IEWBLINK; the load operation summary by entry
IEWBLDGO.

The save and load operation summaries are produced when LIST=ALL or LIST=SUMMARY is specified and
when meaningful information is available. For example, if the load operation failed, no load summary is
produced.

Figure 34 on page 142 and Figure 36 on page 143 contain sample save and load operation summaries.
The summaries contain information such as,

• Current processing options These are the binder options in force at the time the module is
bound.````````````````

• SAVE or LOAD information (as appropriate):

– Date and time of SAVE
– Name of output program library
– Volume serial or storage class of the output program library
– Name of member
– Program module attributes (specified and defaulted)

Note that certain module attributes are not specified as binder options but are determined from the
module itself:

- Compression
- Exceeds 16 MB
- Executable
- Migratable

These attributes provide additional information in the directory entry for later use by the binder or
loader.

– Status (executable/nonexecutable)
– Total virtual storage required to load the module
– Total disk space required to store the module
– Load point address of a loaded program module
– Entry point address of a loaded program module
– Name of a loaded program module if it has been identified to the system in virtual storage.

• Entry point and alias summary:

– Main entry point name
– Alternate entry point and true alias names
– Addressing modes for main and alternate entry points

Binder listings

140 z/OS: z/OS MVS Program Management: User's Guide and Reference

– Classname
– Class offset
– Requested alias names that were not assigned
– Status for alternate entry points and aliases. The status value can be one of the following:

ADDED
The name did not exist in the directory and has been added.

REASSIGNED
The alias existed in the program module and has been reused in the replacement.

REMOVED
The alias existed in the replaced program module, but has not been respecified in the
replacement.

REJECTED
The name was too long to be saved in the directory or already existed and could not be replaced
according to the binder replacement rules.

STOLEN
The name existed as an alias to another module, but was reassigned to the module being saved.

HIDDEN
The name was added as a result of the ALIASES(ALL) option. AMODE is not listed for hidden
aliases.

NOT EXEC
The alias was added, but it is not executable.

Binder listings

Chapter 8. Interpreting binder listings 141

*** O P E R A T I O N S U M M A R Y R E P O R T ***
z/OS V2 R1 BINDER hh:mm:ss ddddd mmmmm dd, yyyy
BATCH EMULATOR JOB(TESTHIGH) STEP(BIND2) PGM= IEWBLINK
PROCESSING OPTIONS:

 ALIASES NO
 ALIGN2 NO
 AMODE UNSPECIFIED
 CALL YES
 CASE UPPER
 COMPAT UNSPECIFIED
 COMPRESS AUTO
 DCBS NO
 DYNAM NO
 EXITS: NONE
 EXTATTR UNSPECIFIED
 FILL NONE
 GID UNSPECIFIED
 HOBSET NO
 INFO NO
 LET 04
 LINECT 060
 LIST SUMMARY
 LISTPRIV NO
 LONGPARM NO
 MAP YES
 MAXBLK 032760
 MODMAP NO
 MSGLEVEL 00
 OVLY NO
 PRINT YES
 RES NO
 REUSABILITY UNSPECIFIED
 RMODE UNSPECIFIED
 SIGN NO
 STORENX NOREPLACE
 STRIPCL NO
 STRIPSEC NO
 SYMTRACE
 TERM NO
 TRAP ON
 UID UNSPECIFIED
 UPCASE NO
 WKSPACE 000000K,000000K
 XCAL NO
 XREF YES
 END OF OPTIONS

SAVE OPERATION SUMMARY:

 MEMBER NAME TSTMOD
 LOAD LIBRARY PMSBC321.LOADOVLY
 PROGRAM TYPE PROGRAM OBJECT(FORMAT 3)
 VOLUME SERIAL 1P0303
 DISPOSITION REPLACED
 TIME OF SAVE 04.25.32 JUL 31, 2013

Figure 34. Sample binder save operation summary (part 1)

Binder listings

142 z/OS: z/OS MVS Program Management: User's Guide and Reference

SAVE MODULE ATTRIBUTES

 AC 000
 AMODE 31
 COMPRESSION UNINITIALIZED TEXT
 DC NO
 EDITABLE YES
 EXCEEDS 16 MB NO
 EXECUTABLE YES
 LONGPARM NO
 MIGRATABLE NO
 OL NO
 OVLY NO
 PACK,PRIME NO,NO
 PAGE ALIGN NO
 REFR NO
 RENT NO
 REUS NO
 RMODE 24
 SCTR NO
 SSI
 SYM GENERATED NO
 TEST NO
 XPLINK NO
 MODULE SIZE (HEX) 00000100
 DASD SIZE (HEX) 00003000

 ENTRY POINT AND ALIAS SUMMARY:
 NAME: ENTRY TYPE AMODE C_OFFSET ClASS NAME STATUS

 TSTMOD MAIN_EP 31 00000000 B_TEXT
 *** E N D O F O P E R A T I O N S U M M A R Y R E P O R T ***

Figure 35. Sample binder save operation summary (part 2)

*** O P E R A T I O N S U M M A R Y R E P O R T ***
z/OS V1 R5 BINDER hh:mm:ss ddddd mmmmm dd, yyyy
BATCH EMULATOR JOB(B422735W) STEP(BIND2) PGM= IEWBLINK

LOAD OPERATION SUMMARY:

 LOADED NAME TEST
 TIME OF LOAD 14.00.46 JUNE 30, 1997
 LOAD PT VADDR(HEX) 00031000
 ENTRY PT VADDR(HEX) 00031000

LOAD MODULE ATTRIBUTES:

 AMODE 24
 PAGE ALIGN NO
 RMODE 24
 MODULE SIZE (HEX) 00001400
*** E N D O F O P E R A T I O N S U M M A R Y R E P O R T ***

Figure 36. Sample binder load operation summary

The Long-symbol abbreviation table
The long-symbol abbreviation table shows the relationships between long symbols and their
abbreviations. A long symbol is longer than 16 bytes, and its abbreviation is 16 bytes. The abbreviated
symbols are used in several binder reports for better readability.

 *** L O N G S Y M B O L A B B R E V I A T I O N T A B L E ***

 ABBREVIATION LONG SYMBOL

 __ct__9Ex-lassFv := __ct__9ExpoClassFv
 __dt__9Ex-lassFv := __dt__9ExpoClassFv
 __sinit80-____Fv := __sinit80000000__dfpft_worklib_source_c_x955404e___Fv
 __sterm80-____Fv := __sterm80000000__dfpft_worklib_source_c_x955404e___Fv
 an_object-456789 := an_object0123456789012345678901234567890123456789

 *** E N D O F L O N G - S Y M B O L A B B R E V I A T I O N T A B L E ***

Figure 37. Sample binder long-symbol abbreviation table

Binder listings

Chapter 8. Interpreting binder listings 143

Short mangled name report
The list of abbreviated names was expanded to display mangled names. This list was designed to avoid
the repetition of data and to keep the Mangled name abbreviation and the DeMangled name together. This
list is already sorted in abbreviated name order.

A new list was added to account for the demangling of short names which normally do not require an
abbreviation, for example, names less than seventeen bytes. Although there are probably few of these
names, an accounting must be made for them.

The changes were made to cause no listing changes if there are no Mangled names to be displayed.

 ******** S H O R T M A N G L E D N A M E S ******

 MANGLED NAME DEMANGLED NAME

 __javPshort == __javPshort

 ******** E N D S H O R T M A N G L E D N A M E S ****

Figure 38. Sample binder short mangled name report

Abbreviation/Demangled name report
The abbreviation report has been expanded to provide a cross reference to the DeMangled names.

 ** A B B R E V I A T I O N / D E M A N G L E D N A M E S **

 ABBR/MANGLE NAME LONG SYMBOL

 __addr_34-tring) := __addr_34_java/lang/IllegalArgumentExceptionI6_<
 init>(L16_java/lang/ String)
 __javCls1-ension := __javCls18_java/awt/Dimension
 $$DEMANGLED$$ == java.awt.Dimension
 __javCls1-nuItem := __javCls17_java/awt/MenuItem
 $$DEMANGLED$$ == java.awt.MenuItem
 __jav15_j-ame()V := __jav15_java/awt/Button9_buildName()V
 $$DEMANGLED$$ == void java.awt.Button.buildName()
 __jav15_j-ener)V := __jav15_java/awt/ButtonY17_addActionListener(L29
 _java/awt/event/ActionListener)V
 $$DEMANGLED$$ == synchronized void java.awt.Button.addActionListe
 + ner(java.awt.event.ActionListener)
 __jav15_j-hics)V := __jav15_java/awt/Canvas5_paint(L17_java/awt/Grap
 phics)V
 $$DEMANGLED$$ == void java.awt.Canvas.paint(java.awt.Graphics)

 *** E N D A B B R E V / D E M A N G L E D N A M E S ***

Figure 39. Sample binder abbreviation/demangled names report

Note:

1. Demangled Names always are preceded with $$DEMANGLED$$.
2. "==" is always followed by the demangled name.
3. Continuation lines for demangled names are prefixed by "+".
4. The demangled name always follows the related abbreviated and mangled names.
5. Reports are in alphabetical order by mangled Name / abbreviation.
6. Names which cannot be demangled are omitted from the list. No message is provided.
7. There are two messages which may appear under the demangled name heading, within the list:

• Unable to CONTINUE DEMANGLE = Abnormal Termination in the Demangler. No further demangling
is attempted. It also causes message IEW2441I MANGLED NAMES EXIST- UNABLE TO ACCESS
DEMANGLER to be written following the report,

• Demangled Name greater than 16384 bytes = Very long demangled name was encountered. The
name is not printed.

Binder listings

144 z/OS: z/OS MVS Program Management: User's Guide and Reference

DDname versus Pathname cross reference report
The pathname to DDname table will be printed even if the binder map is not printed. Since the
constructed DDnames (such as '/0000003') are used in error messages, if a map is not requested or
if not map is produced because the save or load does not complete, you have no way of determining
which z/OS Unix files has been referenced. This report allows you to make that correlation. The following
is an example of a DDname vs. pathname report.

++
| D D N A M E V S P A T H N A M E C R O S S R E F E R E N C E |
++

DDNAME PATHNAME
------ --
0000001 /PM64B301/dlla07
 *** END OF DDNAME VS PATHNAME

Binder service level report
The Binder service level report is printed if the INFO option has been specified and if any service (apar
or PTF) has been applied to the binder module being executed. The following is an example of the Binder
service level Report:

 *** START BINDER LEVEL INFORMATION ***
MODULE COMPILE DATE PTF LEVEL MODULE COMPILE DATE PTF LEVEL

IEWBACTL 06293 UA10162 IEWBBARN 06293 UA15580
IEWBBBIE 06293 UA20277 IEWBBCDS 06293 UA20277

The message summary report
The message summary report provides a table of unique message numbers issued by the binder.
Messages are separated by severity. Message numbers are counted even if the message was suppressed
by the message exit or the MSGLEVEL option.

You can use message numbers from this report to scan the Input Event Log for messages of interest. This
is particularly helpful when modules are batched and listings are extensive.

When the Binder is required to print a message containing a variable (symbol) whose length is greater
than 1024 bytes, the message will print only the first 1020 bytes of the variable(symbol). When this
occurs, the message will contain an asterisk in the blank column immediately following the message
number. Additionally, a note will be printed immediately following the message summary report indicating
at least one message has had a variable (symbol) truncated.

Binder listings

Chapter 8. Interpreting binder listings 145

z/OS V1 R3 BINDER hh:mm:ss ddddd mmmmm dd, yyyy
BATCH EMULATOR JOB(PM64B251) STEP(BIND1) PGM= IEWBLINK
IEW2322I 1220 811 INCLUDE DD1(PO2)
IEW2308I*1112 SECTION
 4KLG_SD14KLG_SD1LONG_SD1LONG_SD1LONG_SD1LONG_50X01012345678901234567890
 0123456789012345678901234567890123_50X030123456789012345678901234567890
 012345678901234567890123_50X0501234567890123456789012345678901234567890
 01234567890123_50X0701234567890123456789012345678901234567890123_50X080
 0123_50X0901234567890123456789012345678901234567890123_50X1001234567890
 01234567890123456789012345678901234567890123_50X12012345678901234567890
 0123456789012345678901234567890123_50X140123456789012345678901234567890
 012345678901234567890123_50X1601234567890123456789012345678901234567890
 01234567890123_50X1801234567890123456789012345678901234567890123_50X190
 0123_50X20012345678901234567890123 HAS BEEN MERGED.
 - - - - - - - - - 1345 LINE(S) NOT DISPLAYED

MESSAGE SUMMARY REPORT

 SEVERE MESSAGES (SEVERITY = 12)
 NONE

 ERROR MESSAGES (SEVERITY = 08)
 2333

 WARNING MESSAGES (SEVERITY = 04)
 NONE

 INFORMATIONAL MESSAGES (SEVERITY = 00)
 2008 2013 2278 2308 2322

 *** NOTE: ANY MESSAGE WITH AN '*' FOLLOWING
 THE MESSAGE NUMBER MEANS A VARIABLE IN THAT
 MESSAGE WAS TRUNCATED TO 1020 BYTES.

 **** END OF MESSAGE SUMMARY REPORT ****

Figure 40. Message summary report (variable truncated)

Binder listings

146 z/OS: z/OS MVS Program Management: User's Guide and Reference

Chapter 9. Binder serviceability aids

There are several diagnosis aids that you can use to analyze and resolve problems found while using the
Program Management binder. These include:

• Binder output data sets
• The AMBLIST service aid
• The IDCAMS printing utility

This topic also explains how to diagnose information when invoking the binder from the z/OS UNIX shell
using the c89 command.

The complexity of the problem being analyzed dictates the number and combinations of the above aids
needed in order to solve the problem. The following discusses each of the aids listed above.

Binder output data sets
The program management binder generates various output listings, which supply you with diagnosis
information at different levels of specificity. The data sets containing this information can be specified in
the JCL, at the time the binder is invoked in batch mode, or in the STARTDialog API call, when the binder
is invoked interactively.

Table 9 on page 147 shows the output data sets by DDNAME, and briefly explains the purpose of their
contents. A more specific description of each data set follows the table.

Binder output data sets and their contents
Table 9. Binder data sets and their contents

DD name Contents

SYSPRINT Depending on user-specified options, this data set may contain binder
processing messages, a data map of the program object or load module,
a cross-reference list depicting numerical offsets of the elements within a
class of binder data, and other information.

IEWDIAG In the absence of SYSPRINT's allocation, this data set receives all the
messages that would have gone to SYSPRINT. This may be the case if the
binder is invoked interactively via its API.

IEWTRACE If specified, this data set contains tracing information as control is passed
from one binder module to another. Input data, output data or both, as
well as return codes, are echoed in most tracing entries, making it easier
to follow and diagnose binder processing events.

IEWDUMP The information in this data set represents a snapshot of binder data in its
internal organization. When the information in the above data sets is not
sufficient to troubleshoot a problem, this information becomes necessary.
Data is directed to this data set when there is an abnormal termination in
the binder's processing, or when a caller makes a request for a dump upon
entry to a specific binder module.

Binder serviceability

© Copyright IBM Corp. 1991, 2021 147

Table 9. Binder data sets and their contents (continued)

DD name Contents

IEWGOFF This data set contains the Generalized Object File Format (GOFF) records
produced by the binder when its input is Extended Object (XOBJ) module
records, which are generated by some compilers. Once built in storage,
the GOFF records are processed and bound by the binder. If this data set
is specified at the time the binder is invoked, the produced GOFF records
will be echoed to it. Should the binder encounter any problems processing
the GOFF records, this data set may be useful in diagnosing problems in
the XOBJ-to-GOFF conversion process or in the source XOBJ records.

The IEWDIAG data set
IEWDIAG contains the binder error messages. This is the same content that is written to SYSTERM, except
that all the messages are always written as though MSGLEVEL=0 and LIST=ALL had been specified. In
addition the first line in IEWGOFF is a header line containing the binder name and release, as well as a
timestamp and date.

Allocating IEWDIAG
The IEWDIAG data set can be a sysout data set, a sequential data set, a member of a partitioned data set,
or a z/OS UNIX file. The data set attributes should be the following:

 DSORG=PS,RECFM=FB,LRECL=80

The following is a sample DD statement which could be used to
allocate IEWDIAG to a UNIX file :
//IEWDIAG DD PATH='/u/mydir/mydiag',PATHMODE=SIRWXU,
// PATHDISP=(KEEP,KEEP),PATHOPTS=(OCREAT,ORDWR)

The IEWTRACE data set

TRACE option
The binder TRACE option may be specified as:

TRACE=ALL|OFF|(start_ecode,[end_ecode])|subcomponent character(s)

By default, the option is set to TRACE=ALL. With this setting, all trace entries will be written if the
IEWTRACE DD is allocated. TRACE=OFF will suppress all tracing.

The TRACE data set may become extremely large. It may be useful to specify that only some of the trace
entries be written out, by using selective trace. To do this, code the trace option as:

TRACE(start_ecode,[end_ecode])

TRACE will be turned on when 'start_ecode' is seen (as if TRACE=ALL had been specified at that point). If
'end_ecode' is specified, TRACE will be turned off when 'end_ecode' is seen (as if TRACE=OFF had been
specified at that point).

To write out only some of the trace entries, you can also code the trace option as:

TRACE='c[c]...'

Where 'c' is a single subcomponent character.

TRACE will be selectively traced when 'subcomponent character' is seen. The subcomponent character is
the fifth character of the binder's module name. For instance, specifying 'O' will trace module IEWBOGET
and other O component modules, and specifying 'X' will trace module IEWBXIOP and other X component
modules.

Binder serviceability

148 z/OS: z/OS MVS Program Management: User's Guide and Reference

Interpreting the contents of IEWTRACE
The contents of this data set represent cumulative tracing entries issued by the binder's modules during
their processing sequence. Trace entries are produced at entry to and exit from each module, as well as at
other points deemed important for diagnosis purposes. For instance, most binder modules produce trace
entries whenever they request a system service. This information proves useful to IBM when servicing the
binder.

All the entries in a trace data set are numbered, as can be seen in the sample trace in Figure 41 on page
149. The numbers are normally sequential for each binder dialog. However, when the binder API is being
used, there might be one or more entries beginning with sequence 0 at the point of each new service call
before the normal sequence resumes. Each entry begins with a sequence number and consists of one or
more lines. The four alpha characters following the sequence numbers represent the last four letters in
a binder's module name, all of which begin with "IEWB". For instance, the module name in trace entry 0
is "IEWBOGET". Horizontally, the next eight numeric (hexadecimal) digits represent internal codes which
signify the events taking place in a module (the coined term to refer to these codes is "event codes", or
"ecodes", for short). So, for example, the ecode in trace entry 0 means "entry to module IEWBOGET", and
the ecode in entry 1 means "exit from IEWBOGET". In entry 1, the ecode at the far right means that the
"processing in IEWBOGET was successful." A complete list of ecodes and their definitions is available to
the organization servicing the binder, but a general guideline for interpreting such ecodes is given below,
under “Interpreting binder ecodes” on page 150.

One or more lines in a trace entry provides all the pertinent diagnosis information at the time the trace
was issued. For instance, most module exit entries print the return and reason codes returned to the
calling module. In entry 9, module IEWBXIOP exited (ecode D2A1A100) with a return code of 12, in
comparison to entry 10, where IEWBXR00 exited (ecode 409FA100) with a return code of 4.

Finally, the characters between the two parenthesis in each entry is an internal time-stamp.

00000000 OGET B903A000 (13:33:48.223045)
 0013 X
00000001 OGET B904A100 (13:33:48.223046) B900B000
00000002 SGET C400A000 (13:33:48.223049)
 0000000316 D
00000003 SGET C402A100 (13:33:48.223050)
 0000000316 D
 00000000 X
 000188D0 X
00000004 RCRE EA20A200 (13:33:48.223053)
 ABCDEFGHIJKLMNOPQRSTUVWXYZ
 T
 00000000 X
 00000000 X
00000005 RSDM ED00A000 (13:33:48.223056)
 BRIO_PTR =
 000188D0 X
00000006 RSDM ED21A200 (13:33:48.223056)
00000007 XR00 4090A000 (13:33:48.223058)
00000008 XIOP D2A0A000 (13:33:48.223061)
 SYSPRINT
00000009 XIOP D2A1A100 (13:33:48.223062) D000B000
00000010 XR00 409FA100 (13:33:48.223063) 4000B000
00000011 RSDM ED22A601 (13:33:48.225296)
00000012 RSDM ED26A602 (13:33:48.225297)
00000013 RSDM ED23A200 (13:33:48.225297)
00000014 RSDM ED01A100 (13:33:48.225298)
00000015 RCRE EA21A200 (13:33:48.225298)
00000016 SGET C400A000 (13:33:48.225302)
 0000000524 D
00000017 SGET C402A100 (13:33:48.225304)
 0000000524 D
 00000000 X
 00018A10 X
00000018 CLCK F200A001 (13:33:48.225309)

Figure 41. Trace sample

Binder serviceability

Chapter 9. Binder serviceability aids 149

Interpreting binder ecodes
Although supplying a complete list of binder ecodes is beyond the scope of this document, providing a
general guideline for reading such ecodes is necessary and may prove useful when trying to diagnose a
binder problem.

An ecode is a fullword bit string in the hexadecimal format MMEEGGGG. The three subfields are used as
follows:

• MM - Module identifier (00-FF). It identifies the module in which the event took place.
• EE - Event number within the module (00-FF).
• GGGG - Generic event code. This number varies as follows:

 GGGG meaning

 A0XX Module entry. XX is usually 00, but
 if a module has multiple entry points,
 it may be 01, 02, etc.

 A1XX Module exit. XX is usually 00, but
 if a module has multiple exit points,
 it may be 01, 02, etc.

 B000 Returned to caller, trace, etc

 XXXX Message number of associated message

All modules have both an entry and an exit trace record, and the exit trace record gives the return and
reason codes. Most modules also trace calls for entry and return to system services.

The following specific ecodes may be of help:

• FFA6B000

Contains a copy of a message to be issued (some of these messages might not actually appear in
SYSPRINT because of the MSGLEVEL setting).

• 0040XXXX-005CXXXX

Trace parameters passed on binder API calls.
• A200A001/A200A101

Trace additions of symbol names to the binder's Namelist. Contains the name, its category code, and
the assigned name list index.

• 8000A000

Traces the addition of an element index record to the binder's workmod. It contains the pertaining class
and section names.

There is normally a DEND entry at the end of the trace of a complete binder execution. If it is not there,
the trace was truncated due perhaps to a program check in the binder. In this case, the trace would
probably not be very useful as it would not show the complete binder logic sequence.

If you know that the binder did not end normally, then backing up from the DEND entry may show a binder
terminal error message. For normal termination you will see the IEW2008I message.

Allocating the IEWTRACE data set
This information is generated whenever the IEWTRACE ddname is specified in the batch mode of the
binder, or when the TRACE file name is specified in the FILES parameter of the STARTDialog API call.
In batch mode, this data set can be either a SYSOUT data set, a sequential data set, or a member of a
partitioned data set. The DCB attributes for this data set should be:

 DSORG=PS,RECFM=VB,LRECL=84

Binder serviceability

150 z/OS: z/OS MVS Program Management: User's Guide and Reference

Note that RECFM can be VBA as well. BLKSIZE can be any multiple of 4 which is equal to or larger
than the LRECL, 84. IBM recommends omitting BLKSIZE so as to take advantage of an optimal, system-
determined block size.

IEWTRACE may be allocated to a z/OS UNIX file. Trace records are written to a z/OS UNIX file as 80-byte
records. Trace records that would have been longer than 80 bytes are truncated. Here is an example of
allocating IEWTRACE to a z/OS UNIX file:

//IEWTRACE DD PATH='/u/mydir/mytrace',PATHMODE=SIRWXU,
// PATHDISP=(KEEP,KEEP),PATHOPTS=(OCREAT,ORDWR)

The IEWDUMP data set
The information in this data set represents a snapshot of binder data in its internal organization. When the
information in the other diagnosis data sets is not enough to identify a problem, this information becomes
essential. For problems that occur within the binder, IEWDUMP or SYSUDUMP is sufficient and easier to
work with than an IPCS format dump.

Generating a dump in the binder
Data is directed to this data set when there is a terminal (abnormal) error in the binder, when a caller
makes a request for a dump upon entry to a specific binder module, or when a program check or system
abnormal termination occurs while in the binder.

If SYSUDUMP or SYSABEND has been allocated, a SYSUDUMP will be taken if a binder logic error or
a program check or system abend occurs. If IEWDUMP has been allocated, a dump which contains
formatted binder control blocks and the dataspace storage in use by the binder will be produced. (You
would get both dumps if SYSUDUMP and IEWDUMP were both allocated). Logic errors are terminal and
the binder job will terminate after taking the dump.

You can request that a formatted dump (IEWDUMP) be taken when a specific non-terminating binder
event code (ecode) is seen. In this case, binder execution will continue after the dump. To request that a
dump be taken on a specific ECODE in batch mode, the following is a JCL example:

//LINK EXEC PGM=IEWBLINK,PARM=('LET(8)',XREF,
// 'DUMP=''45082508''',MAP)

Interpreting the contents of IEWDUMP
The formatted portion will be at the end of the dump. For each workmod, the workmod index records are
shown, followed by Namelist entries.

Workmod data elements
Module data in the binder internal (workmod) format is organized into units called elements. (Some older
or obsolete binder documentation may call these 'items' or even 'itemids'). An element is identified by a
section name and class name.

The formatted portion of the dump provides the information necessary to find the data associated with
each element in each workmod (see Figure 42 on page 152 for an example). The data is formatted in a
three-level hierarchy as follows:

• workmod
• section
• class

The first line output for each element prints:
APPPTR

The pointer to the first "append pointer" - that is, to the control block describing the first block of
contiguous data in the element.

Binder serviceability

Chapter 9. Binder serviceability aids 151

CNT
The append count (the total number of such contiguous blocks).

HIW
"HI-WATER" - the highest record number in the element. For text, this is the last byte of initialized text
- it may be smaller than the total CSECT text length.

LRECL
Length of one logical record

In the second line for each element, 20 bytes of attribute information are shown. The first two fields give
the offset of the data within the containing class and the length, relative to records. (For text, the length of
one record is one byte.)

z/OS PROGRAM MANAGEMENT DIAGNOSTICS

WORKMOD TOKEN: 0 21EDBFB0

 SECTION: printf
 CLASS: B_ESD
 APPPTR: 21F23620 CNT: 1 HIW: 3 LRECL: 48
 CLASS ATTRIBUTES: 0000008A 00000003 00480000 40100000 00000000
 CLASS: B_IDRL
 APPPTR: 21F25720 CNT: 1 HIW: 1 LRECL: 10
 CLASS ATTRIBUTES: 00000007 00000001 00100000 40100000 00000000
 CLASS: B_TEXT
 APPPTR: 21F21D78 CNT: 1 HIW: A LRECL: 1
 CLASS ATTRIBUTES: 000001E0 0000000A 00010303 00000001 00000000

Figure 42. EWDUMP sample – Workmod token area

Finding the data in the dump
Go to address APPPTRT to find the data in an element. The important fields are:

Table 10. APPPTRT dump data

Offset (HEX) Content

0 Next append control block

4 Starting offset of the data described by this block from the start of the containing
element

8 Count of logical records described by this block

C Data pointer - location of actual data

C Type of pointer (1 = virtual addr, 2 = dataspace)

10 Alet

14 Virtual address

Allocating the IEWDUMP data set
This information is generated whenever the IEWDUMP DDNAME name is specified in the batch mode of
the binder, or when the DUMP file name is specified in the FILES parameter of the STARTDialog API call.
This data set can be either a SYSOUT data set, a sequential data set, a member of a partitioned data set,
or a TSO terminal.

 DSORG=PS,RECFM=VB,LRECL=125

Note that the BLKSIZE can be equal to or larger than the LRECL, 125. IBM recommends omitting BLKSIZE
so as to take advantage of an optimal, system-determined block size.

Binder serviceability

152 z/OS: z/OS MVS Program Management: User's Guide and Reference

The IEWGOFF data set

Interpreting the contents of IEWGOFF
This data set contains the Generalized Object File Format (GOFF) records produced by the binder when its
input is Extended Object (XOBJ) module records, which are produced by specifying the RENT option in the
C/C++, OO Cobol, and other compilers. Once built in storage, the GOFF records are processed and bound
by the binder. The records in this data set are merely a snapshot of the records produced during a binder
run. If the binder encounters any problem processing them, it may be useful to look at the GOFF records
in this data set so as to diagnose problems in the XOBJ-to-GOFF conversion process or in the source
XOBJ records. For this reason, the contents of this data set may be requested by the IBM organization
servicing the binder.

See GOFF records and their formats in z/OS MVS Program Management: Advanced Facilities.

Allocating the IEWGOFF data set
If XOBJ records are passed to the binder as input and the IEWGOFF ddname is specified in the JCL, GOFF
records are written to the indicated data set. The IEWGOFF data set can be either a sysout data set, a
sequential data set, or a member of a partitioned data set. It cannot be a z/OS UNIX file. The attributes of
the GOFF data set should be:

 DSORG=PS,RECFM=VB,LRECL=2124

Note that the BLKSIZE can be a multiple of 4 equal to or larger than the LRECL, 2124. IBM recommends
omitting BLKSIZE so as to take advantage of an optimal, system-determined block size.

The AMBLIST service aid
AMBLIST is useful and even essential in many cases. However, there are a few limitations that you should
be aware of.

1. AMBLIST does not display all the internal control blocks of program objects. Therefore, AMBLIST's
output may not be sufficient to diagnose a problem which requires knowledge of such information.

2. If there is anything wrong with the module (program object or load module), AMBLIST may fail.
Sometimes specifying OUTPUT=MODLIST in the AMBLIST job will help in this situation, since the XREF
portion of the output is highly dependent on all the cross links between ESD and RLD being correct.

Here are three JCL examples for the invocation of AMBLIST:

//EXAMPLE1 EXEC PGM=AMBLIST,REGION=16M
//SYSPRINT DD SYSOUT=*
//LOADLIB1 DD DSN=APPS.PDSE,DISP=(SHR)
//SYSIN DD *
 LISTLOAD DDN=LOADLIB1,MEMBER=(APP1)
/*
//EXAMPLE2 EXEC PGM=AMBLIST,REGION=16M
//SYSPRINT DD SYSOUT=*
//LOADLIB2 DD DSN=GAMES.PDSE,DISP=(SHR)
//SYSIN DD *
 LISTLOAD DDN=LOADLIB2,MEMBER=(APP1),OUTPUT=MODLIST
/*
//EXAMPLE3 EXEC PGM=AMBLIST,REGION=16M
//SYSPRINT DD SYSOUT=*
//HFS1 DD PATH='/u/userid/main',PATHDISP=(KEEP,KEEP)
//SYSIN DD *
 LISTLOAD DDN=HFS1,OUTPUT=MODLIST
/*

You can also invoke AMBLIST using the UNIX amblist command. Here are three examples of invoking
amblist from the UNIX shell:

echo " LISTLOAD MEMBER=(APP1)" | amblist "//'apps.pdse'" > APP1.both.amblist

echo " LISTLOAD MEMBER=APP1,OUTPUT=MODLIST" > amblist.ctl
amblist "//'apps.pdse'" > APP1.modlist.amblist < amblist.ctl

Binder serviceability

Chapter 9. Binder serviceability aids 153

amblist main | grep 'ENTRY POINT' # where "main" is a program in the working
directory LISTLOAD OUTPUT=MODLIST # needs leading white space; output starts
as (each) control statement is entered ^D # EOF: in raw mode, type CTRL-D, in
OMVS ¢D, by default

For more information, see AMBLIST, in z/OS MVS Diagnosis: Tools and Service Aids.

The IDCAMS printing utility
You can use IDCAMS to print the contents of a program object in a z/OS UNIX file, or the unformatted
contents of a program object in an MVS data set.

An example of the IDCAMS JCL follows:

//DUMPMOD EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//INPUT2 DD DSN=PDSE1.APPS(APP1),DISP=SHR
//SYSIN DD *
 PRINT INFILE(INPUT2)
/*

c89 and ld diagnosis

Step for obtaining diagnosis information when the binder is invoked from c89:

About this task
Before you begin: You need to make sure the IEWDUMP and IEWTRACE data sets are pre-allocated and
cataloged. The lowest-level qualifier must be the same as the DDNAMEs (IEWTRACE or IEWDUMP), and
the remainder (prefix) must be the same for both.

Rule: Both data sets must be pre-allocated even if only one of is used.

Perform the following step to obtain the diagnosis information.

• In the UNIX shell, export _C89_DEBUG_PREFIX=your_prefix, where your_prefix is the prefix
used on the names of the IEWDUMP and IEWTRACE data sets. The c89 command will do the allocations
(DISP=SHR) during the bind step.

Guidelines: These guideline are designed to ease problem determination:

• For problem diagnosis, you should also use export _BPXK_JOBLOG=2 so that any message appearing
on the operator console is also written to stderr.

• In addition to IEWDUMP and IEWTRACE, use both the c89 -v and -V options to capture stdout and
stderr. This method makes the binder invocation parameters and the binder output listing with error
messages available for diagnosis.

• If you use the Cxx or C++ commands instead of c89, the environment variable name much match
the command name. For example, use _CXX_DEBUG_PREFIX or _C++_DEBUG_PREFIX instead of
_C89_DEBUG_PREFIX.

Step for obtaining diagnosis information when the binder is invoked from ld:

About this task
Before you begin: You need to make sure the IEWDUMP and IEWTRACE data sets are pre-allocated and
cataloged. You can use either or both data sets. There is no restriction on the data set name.

Perform the following step to obtain the diagnosis information.

• In the UNIX shell, export _LD_DEBUG_DUMP=dumpdsn, _LD_DEBUG_TRACE=tracedsn or both.
Dumpdsn and tracedsn are the names of the IEWDUMP and IEWTRACE data sets. The ld command
will do the allocations (DISP=SHR) before invoking the binder.

Binder serviceability

154 z/OS: z/OS MVS Program Management: User's Guide and Reference

Guidelines: These guidelines are designed to ease problem determination:

• For problem diagnosis, it is strongly advised that you also use export _BPXK_JOBLOG=2 so that any
message appearing on the operator console is also written to stderr.

• In addition to IEWDUMP and IEWTRACE, use both the ld -v and -V options to capture stdout and stderr.
This method makes the binder invocation parameters and the binder output listing with error messages
available for diagnosis.

Serviceability aids for the Binder API interface
You do NOT need to specify the diagnostic file names in the STARTD file list if you use the standard
DDNAMES. For example, to obtain the binder trace dataset you need only allocate IEWTRACE. However, if
you wish to override the default ddnames for these data sets, you can do so by coding filelist entries on
STARTD.

Table 11. Filelist diagnostic entries.

FILE name Default ddname

DIAG IEWDIAG

DUMP IEWDUMP

GOFF IEWGOFF

TRACE IEWTRACE

To request a dump on a specific ecode using the binder interface, use the following assembler example as
a guide.

**
* START THE BINDER DIALOG *
**
STARTD IEWBIND FUNC=STARTD,RETCODE=RETCODE,RSNCODE=RSNCODE, X
 DIALOG=DTOKEN,OPTIONS=OPTLIST,FILES=FILELIST
*
OPTLIST DS 0F
 DC F'2' NUMBER OF ENTRIES IN OPTIONS LIST
 DC CL8'MSGLEVEL',F'2',A(MSGVALU)
 DC CL8'DUMP ',F'10',A(ECODE) DUMP ON SPECIFIC ECODE
MSGVALU DC C'12'
ECODE DC C'''2500A000''' ECODE FOR ENTRY TO
* BINDER MODULE IEWBFMOD
FILELIST DS 0F
 DC F'1' NUMBER OF ENTRIES IN FILES LIST
 DC CL8'DUMP ',F'8',A(DDNAME) DUMP DATA SET REQUESTED
DDNAME DC C'IEWDUMP '

You may write the DIAG or TRACE files to a z/OS UNIX file either by allocating the ddname for the file to
z/OS UNIX file or by specifying a z/OS UNIX path name in place of the ddname in the STARTD filelist. The
path name may be either a relative or absolute path name and may be up to 1023 characters in length. It
must begin with either a '/' or './'. The DIAG and TRACE files will be written as text files. Trace records will
be truncated to 80 characters if written to a z/OS UNIX file.

If you are writing a BInder API program which may be executed in the UNIX shell, we recommend that
you pass the optional 'environ' parameter on the STARTD call. This will allow users of the API program to
override or add path names or ddnames for the binder files using the external variables recognized by the
binder, or to pass additional binder options.

The following environment variables are supported for binder diagnostic files:
IEWBIND_DIAG

pathname or ddname to be used for IEWDIAG
IEWBIND_TRACE

pathname or ddname to be used for IEWTRACE

Binder serviceability

Chapter 9. Binder serviceability aids 155

IEWBIND_DUMP
ddname to be used for IEWDUMP

IEWBIND_GOFF
ddname to be used for IEWGOFF

For more information about binder support for environment variables, refer to the documentation under
the binder STARTD API description. For example to obtain an IEWDUMP for a speciifc binder ecode
without altering the souce code for your program, the binder DUMP option could be coded with the
desired ecode as the value for the IEWBIND_OPTIONS environment variable.

See z/OS MVS Program Management: Advanced Facilities for more information on the binder API.

Binder serviceability

156 z/OS: z/OS MVS Program Management: User's Guide and Reference

Appendix A. Using the linkage editor and batch
loader

All of the services of the linkage editor and batch loader can be performed by the program management
binder. We recommend that you convert to exclusive use of the binder. However, if you do need to use
the linkage editor or batch loader, most of the information in this document is applicable with a few
differences. This appendix describes those differences.

Creating programs from source modules

AMODE and RMODE differences
The differences in linkage editor processing of AMODE and RMODE values are:

• Values of MIN or 64 for AMODE are not supported.
• Value of 64 for RMODE is not supported.
• If only one value, either AMODE or RMODE, is specified on the MODE control statement or on the

AMODE and RMODE options, the other value is implied according to the following table:

Value specified Value implied

AMODE=24 RMODE=24

AMODE=31 RMODE=24

AMODE=ANY RMODE=24

RMODE=24 see note below

RMODE=ANY AMODE=31

Note: If only an RMODE of 24 is specified, no overriding AMODE value is assigned. Instead, the AMODE value in
the ESD data for the main entry point, a true alias, or an alternate entry point is used in generating its respective
directory entry.

• When building an overlay format load module, the AMODE and RMODE values in the ESD data of the
output module are discarded and can be restored only by including the object modules carrying those
values.

• ESD records that specify AMODE(ANY) RMODE(ANY) are handled differently:

– If the entry point external symbol is marked AMODE ANY/RMODE ANY, associated entry point
attributes are assigned according to the following hierarchy:

- If the load module contains one or more CSECTs marked AMODE 24, the linkage editor assigns an
AMODE of 24 to all entry points that have ESD entries marked AMODE ANY/RMODE/ANY.

- If the load module has an RMODE of 24 and it contains no CSECTS marked AMODE 24, the linkage
editor assigns an AMODE of ANY to these entry points.

- If the load module RMODE is ANY, the linkage editor assigns an AMODE of 31 to these entry points.

Unsupported input module formats and contents
The linkage editor and batch loader do not support GOFF or XOBJ object module formats, program
objects, or object modules with 64-bit content, nor do they support z/OS UNIX files. The batch loader
does not accept control statement input.

Using linkage editor and loader

© Copyright IBM Corp. 1991, 2021 157

Invoking the linkage editor and batch loader
You can invoke the linkage editor and batch loader with JCL, under TSO, or through a program.

Invoking the linkage editor and batch loader with JCL
The linkage editor and batch loader programs can be invoked on the PGM parameter of the JCL EXEC
statement.

The linkage editor is invoked using the program name HEWLKED. The linkage editor can also be invoked
by the following aliases: HEWLF064, IEWLF440, IEWLF880, and IEWLF128. This program link-edits a
load module and stores it in a partitioned data set library.

The batch loader is invoked using the program name HEWLDIA. This program link-edits a load module,
loads it into virtual storage, and executes it.

SYSLIN data sets
The maximum block size of data sets defined in the SYSLIN definition is 3200 bytes. The linkage editor
does not support load modules or program objects in the primary input. The batch loader does not
support program objects in the primary input.

SYSPRINT and SYSLOUT data sets
The DCB parameters for SYSPRINT and SYSLOUT need not be specified. If they are specified, they must
be RECFM=FA or RECFM=FBA and LRECL=121, and the BLKSIZE parameter is any multiple of 121 to a
maximum of 4840 bytes.

See “Invoking the binder with JCL” on page 35 for information on using JCL.

SYSUT1 data set
In addition to the required data sets described in “Binder DD statements” on page 37, the linkage editor
uses another data set to hold data records during processing. The linkage editor places intermediate
data in this data set when storage allocated for input data or certain forms of out-of-sequence text is
exhausted.

A SYSUT1 DD statement is required to describe this data set. It must be a sequential data set assigned
to a single direct access storage device. Space must be allocated for this data set, but the data set
characteristics are supplied by the linkage editor.

Message IEW0294 will be issued if you specify more than one volume.

Included data sets
If an included data set contains another INCLUDE statement, the specified module is processed but any
data following the INCLUDE statement is not processed.

Concatenated data sets
All of the data sets in a concatenated list must have the same record characteristics (format, record
length). Concatenated data sets can have differing block sizes and be in any order of blocksize.

All concatenated call libraries must be of the same type (object modules or load modules). A call library
cannot contain program objects.

Programming Interface Information

Invoking the linkage editor from a program
You can pass control to the linkage editor from a program using the LINK, ATTACH, LOAD, CALL, and XCTL
macros using either 24-bit or 31-bit addressing. You must supply a save area address in register 13.

Using linkage editor and loader

158 z/OS: z/OS MVS Program Management: User's Guide and Reference

The linkage editor is invoked using the HEWLKED program name, or one of these aliases: HEWLF064,
IEWLF440, IEWLF880, or IEWLF128.

The use of these macros is identical to usage for the binder with the exception of the ddname list passed
as a parameter on LINK, ATTACH, CALL, and XCTL calls.

The sequence of the 8-byte entries in the ddname list for the linkage editor is as follows:
Entry

Alternate Name For:
1

SYSLIN
2

Member name (The name under which the output load module is stored in the SYSLMOD data set.
This entry is used if the name is not specified on the SYSLMOD DD statement or if there is no NAME
control statement.)

3
SYSLMOD

4
SYSLIB

5
Not applicable

6
SYSPRINT

7
Not applicable

8
SYSUT1

9-11
Not applicable

12
SYSTERM

Note:

1. The linkage editor supports all data sets allocated in the extended addressing space (EAS) of an
extended address volume (EAV).

2. The linkage editor does not support the following dynamic allocation (DYNALLOC or SVC 99) options
for any data sets: S99TIOEX(XTIOT), S99ACUCB(NOCAPTURE), and S99DSABA(DSAB above the line).

When the linkage editor completes processing, a return code is returned in register 15 (see “Linkage
editor return codes” on page 172 for a list of linkage editor return codes).

End Programming Interface Information
Programming Interface Information

Invoking the batch loader from a program
You can pass control to the batch loader from a program using the LINK, ATTACH, LOAD, CALL, and XCTL
macros using either 24-bit or 31-bit addressing. You must supply a save area address in register 13.

The batch loader can be invoked at three different entry points to perform the following services:
HEWLDIA

Link-edits a load module, loads it into virtual storage, and executes it.

Using linkage editor and loader

Appendix A. Using the linkage editor and batch loader 159

HEWLDI
Link-edits a load module, loads it into virtual storage, and identifies it. HEWLDI returns the address of
an 8-character module name in register 1. This name can be used to invoke the loaded program using
a LINK or ATTACH macro.

HEWLD
Link-edits a load module and loads it into virtual storage, but does not identify it. HEWLD returns the
entry point of the loaded module in register 0 (the high order bit is on for AMODE). Register 1 points
to two fullwords. The first points to the beginning of storage occupied by the loaded program, and the
second contains the length of the loaded program.

The ATTACH, LINK, LOAD, and XCTL macros are described in z/OS MVS Programming: Assembler Services
Guide. The use of these macros is identical to usage for the binder, with the exception of the ddname list
passed as a parameter on LINK, ATTACH, CALL, and XCTL calls.

The sequence of the 8-byte entries in the ddname list for the batch loader is as follows:
Entry

Alternate Name For:
1

SYSLIN
2

Not applicable
3

Not applicable
4

SYSLIB
5

Not applicable
6

SYSLOUT
7-11

Not applicable
12

SYSTERM

Note:

1. The batch loader does not support all data sets allocated in the extended addressing space (EAS) of an
extended address volume (EAV).

2. The batch loader does not support the following dynamic allocation (DYNALLOC or SVC 99) options for
any data sets: S99TIOEX(XTIOT), S99ACUCB(NOCAPTURE), and S99DSABA(DSAB above the line).

The batch loader generates a return code when it completes its execution and returns it in register 15.
See “Batch loader return codes” on page 173 for more information on batch loader return codes.

End Programming Interface Information

Invoking the linkage editor and batch loader under TSO
You also use the LINK command to invoke the linkage editor and the LOADGO command to invoke the
batch loader under TSO. If you specify the NOBINDER option on either of these commands, the linkage
editor or batch loader will be invoked rather than the binder.

Using linkage editor and loader

160 z/OS: z/OS MVS Program Management: User's Guide and Reference

Editing a control section

Replacing control sections
A restriction applies when you request the linkage editor to perform both a CHANGE and a REPLACE
operation on the same included module. This situation occurs when you delete one or more control
sections and rename references to symbols within a removed control section to some other external
symbol all within the scope of a single INCLUDE. When you change more than one entry name within a
removed control section to a single new external symbol, you must specifically include the control section
that resolves the new external symbol prior to the CHANGE operation.

If a replaced control section contains unresolved external references and the replacing control section
does not, you must either specify the NCAL parameter, use the REPLACE statement to delete the
unresolved external references, or use the LIBRARY statement to mark the references for restricted
no-call or never-call.

Deleting an external symbol
If you use the linkage editor to delete a control section that contains any unresolved external references,
those references are NOT removed from the external symbol dictionary.

If the input does not have an INCLUDE statement or object module after a REPLACE statement that is to
delete a CSECT, and there are external references to be resolved from SYSLIB, the linkage editor causes
the delete request to operate on the first module from SYSLIB and deletes the control section.

Control statement reference

Continuing a statement
You indicate that a control statement line is continued onto the next line by placing a non-blank character
in column 72 of the line. The continued statement must begin in column 16 of the next line.

ALIAS statement
No more than 64 alias names can be assigned to one load module. Note that the SYMLINK and SYMPATH
variants of the ALIAS statement are not supported.

CHANGE statement
If a CHANGE statement is not followed by any included module, the linkage editor applies the change to
the first module, if any, brought in during automatic library call.

ENTRY statement
If you provide more than one ENTRY statement, the main entry point specified on the last statement is
used.

EXPAND statement
The EXPAND statement is placed immediately following the INCLUDE statement. The maximum number
of bytes that can be added to any indicated section is 4095. Note that you may not specify a class name
on the EXPAND statement.

IDENTIFY statement
An IDENTIFY statement can be continued. A whole operand must appear on a single line, and at least one
operand must appear on each line of a continued statement.

Using linkage editor and loader

Appendix A. Using the linkage editor and batch loader 161

Placement: The linkage editor requires that the IDENTIFY statement follow the module containing the
control section to be identified or the INCLUDE statement specifying the module.

INCLUDE statement
Pathnames are not supported. -ATTR, -IMPORTS, -ALIASES and their negative specifications are not
supported.

LIBRARY statement
Pathnames are not supported. The form LIBRARY ddname is not supported.

NAME statement
If a name is not specified on a NAME statement, the name TEMPNAME will be assigned to the module.

ORDER statement
If the same common area or control section is listed on more than one ORDER statement, the linkage
editor uses the sequence listed on the first statement. The linkage editor ignores all subsequent
occurrences of the name and the balance of the ORDER statement on which the name appears except
when the occurrence is the last operand on one ORDER statement and the first operand on the next.

REPLACE statement
Placement: If the REPLACE statement is the last control statement in the SYSLIN data set, and there
are unresolved external references to be resolved from SYSLIB, the linkage editor causes the REPLACE
service to operate on the first module from SYSLIB by an automatic library call.

When a control section containing unresolved external references is deleted, the unresolved references
remain in the CESD.

When some but not all control sections of a separately assembled module are to be replaced, the linkage
editor causes A-type address constants that refer to a deleted symbol to be incorrectly resolved unless
the entry name is at the same displacement from the origin in both the old and the new control sections.

If no INCLUDE statement follows the REPLACE statement, one module might be left out during automatic
library call. Message IEW0132 is issued.

Unsupported binder control statements
The following binder control statements are not supported:

• AUTOCALL
• IMPORT
• RENAME
• SETOPT

Processing and attribute options reference
The options described in Chapter 6, “Binder options reference,” on page 69 also apply to the linkage
editor and batch loader except as noted here.

Supported binder options
The linkage editor and batch loader support the following binder options:

• AC
• ALIGN2

Using linkage editor and loader

162 z/OS: z/OS MVS Program Management: User's Guide and Reference

• AMODE
• CALL
• DC
• DCBS
• EP
• LET
• LIST
• LISTPRIV
• MAP
• NAME
• OL
• OVLY
• PATHMODE
• PRINT
• RES
• RMODE
• SCTR
• SIZE
• TERM
• TEST
• XCAL
• XREF

LIST: Listing control
Specify LIST or NOLIST. The form LIST=value is not supported by the linkage editor and batch loader.
When the LIST option is specified, the control statements are listed in either the SYSPRINT, SYSLOUT, or
SYSTERM data set.

MAP and XREF
When the XREF option is specified, the linkage editor produces a cross-reference table of the output load
module. The cross-reference table includes a module map; therefore, both XREF and MAP need not be
specified in the same job step.

Reusability
The form REUS(value) is not supported by the linkage editor. Use the single keyword form REUS |
NOREUS | RENT | NORENT | REFR | NOREFR to code the reusability option. See “REUS: Reusability
options” on page 91 for further information on reusability attributes.

SIZE: Space specification
value1

For the linkage editor, the minimum value is 96KB (98304 bytes) and the maximum value is 9999KB
(approximately 10MB). All of this storage is below the 16 MB line.

value2
The minimum value is the larger of 6KB (6144) or the length of the largest input text record. The
maximum value is the length of the output load module plus 4096 bytes if the length of the output
module is equal to or greater than 40KB.

Using linkage editor and loader

Appendix A. Using the linkage editor and batch loader 163

The storage specified by value2 is part of the total allocation specified by value1.

Not-Executable attribute
Unlike the binder, the linkage editor will replace an executable module with a notexecutable version. All
other conditions, such as the replace option on the NAME statement and the LET option, must allow for
storing of the module.

Incompatible processing and attribute options
Some processing and attribute options are incompatible: Some options cannot be active at the same time
with others. In Figure 43 on page 164, an X at an intersection marks a pair of incompatible options. When
both are specified, the option that appears higher in the list is used. For example, if both OVLY and RENT
are specified, the module will be in an overlay structure but is not reenterable.

Figure 43. Incompatible processing and attribute options

Linkage editor requirements
This section describes the amount of virtual storage the linkage editor requires and its record processing
capacities.

Using linkage editor and loader

164 z/OS: z/OS MVS Program Management: User's Guide and Reference

Virtual storage requirements
The approximate minimum storage requirement and the capacity of the linkage editor program are
described in Table 12 on page 165. To increase the capacity for processing external symbol dictionary
records, intermediate text records, relocation dictionary records, and identification records, increase
value1 or decrease value2 of the SIZE option. Output text record length can be increased by increasing
the SIZE option values, but, in no case, can the record length ever exceed the track length for the device
or 32KB.

Table 12. Linkage editor capacities for minimal SIZE values (96KB, 6KB)

Function Capacity

Virtual storage allocated 96KB

Maximum number of entries in CESD 558

Maximum number of intermediate text records 372

Maximum number of RLD records (relocatable address constants) 192

Maximum number of segments per program 255

Maximum number of overlay regions per program 4

Maximum blocking factor for input object modules (number of 80-
column card images per physical record)

5

Maximum blocking factor for SYSPRINT output (number of 121-
character logical records per physical record)

5

Output text record length, for the devices supported by this system 3KB (See Note)

Note: The maximum output text record length is achieved when value2 of the SIZE parameter is at least
twice the record length size.

The number of overlay segments and regions that can be processed is not affected by increasing the
available storage.

For the CESD, the number of entries allowed can be computed by subtracting, from the maximum number
given in Table 12 on page 165, one entry for each of the following:

• A ddname specified in LIBRARY statements
• A ddname specified in INCLUDE statements
• An ALIAS statement
• A symbol in REPLACE or CHANGE statements that are in the largest group of these statements

preceding a single object module in the input to the linkage editor
• The segment table (SEGTAB) in an overlay program
• An entry table (ENTAB) in an overlay program.

To compute the number of intermediate text records that will be produced during processing of either
program, add one record for each group of x bytes within each control section, where x is the record
size for the intermediate data set. The minimum value for x is 1KB; a maximum is chosen depending on
the amount of storage available to the linkage editor and the devices allocated for the intermediate and
output data sets.

The number of intermediate text records that can be handled by a linkage editor program is less than the
maximums given in Table 12 on page 165 if the text of one or more control sections is not in sequence by
address in the input to the linkage editor.

The total length of the data fields of the CSECT identification records associated with a load module
cannot exceed 32KB. To determine the number of bytes of identification data contained in a particular
load module, use the following formula:

Using linkage editor and loader

Appendix A. Using the linkage editor and batch loader 165

 SIZE = 269 + 16A + 31B + 2C + I(n + 6)

where:

A =
The number of compilations or assemblies by a processor supporting CSECT identification that
produced the object code for the module.

B =
The number of preprocessor compiler compilations by a processor supporting CSECT identification
that produced the object code for the module.

C =
The number of control sections in the module with END statements that contain identification data.

I =
The number of control sections in the module that contain user-supplied data supplied during link-
editing by the optional IDENTIFY control statement.

n =
The average number of characters in the data specified by IDENTIFY control statements.

Note:

1. The size computed by the formula includes space for recording up to 19 AMASPZAP modifications.
When 75% of this space has been used, a new 251-byte record is created the next time the module is
reprocessed by the linkage editor.

2. To determine the approximate number of records involved, divide the computed size of the
identification data by 256.

Example: A module contains 100 control sections produced by 20 unique compilations. Each control
section is identified during link-editing by 8 characters of user data specified by the IDENTIFY control
statement. The size of the identification data is computed as follows:

 A = 20
 I = 100
 n = 8

 269 + 320 + 1400 = 1989 bytes

If the optional user data specified on the IDENTIFY control statements is omitted, the size can be reduced
considerably as shown in the following computation:

 269 + 320 = 589 bytes

The maximum number of downward calls made from a segment to other segments lower in its path can
never exceed 340. To compute the maximum number of downward calls allowed, subtract 12 from the
SYSLMOD record size, divide the difference by 12. Examples of maximum downward calls are 84 for a
SYSLMOD record size of 1024 bytes and 340 for a SYSLMOD record size of 6144 bytes.

Batch loader requirements
The batch loader can require virtual storage space for the following items:

• Batch loader code
• Data management access methods
• Buffers and tables used by the batch loader (dynamic storage)
• Loaded program (dynamic storage).

Region size includes all four of these items; the SIZE option refers to the last two items.

For the SIZE option, the minimum required virtual storage is 4KB plus the size of the loaded program.
This minimum requirement grows to accommodate the extra table entries needed by the program being

Using linkage editor and loader

166 z/OS: z/OS MVS Program Management: User's Guide and Reference

loaded. For example, Fortran requires at least 3KB plus 4KB plus the size of the loaded program, and PL/I
needs at least 8KB plus 4KB plus the size of the loaded program. Buffer number (BUFNO) and block size
(BLKSIZE) could also increase this minimum size. Table 13 on page 167 shows the appropriate storage
requirements in bytes.

The maximum virtual storage that can be used is whatever virtual storage is available.

All or part of the storage required is obtained from user storage.

Table 13. Batch loader virtual storage requirements. The table shows the consideration, the approximate virtual storage
requirements, and comments.

Consideration Approximate virtual storage requirements (in
bytes)

Comments

Data Management 6KB BSAM

Object Module Buffers
and DECBs

BUFNO × (BLKSIZE + 24) Concatenation of different BLKSIZE and BUFNO
must be considered. (Minimum BUFNO=2)

Load Module Buffer
and DECBs

304

SYSTERM DCB Buffers
and DECBs

312 Allocated if TERM option is specified

SYSLOUT Buffers and
DECBs

BUFNO × (BLKSIZE + 24) Buffer size rounded up to integral number of
double words. (Minimum BUFNO=2)

Size of program being
loaded

Program size Program size is restricted only by available
virtual storage

Each external
relocation dictionary
entry

8

Each external symbol 20

Largest ESD number 4n (n is the largest number of ESDs in any input
module)

Allocated in increments of 32 entries

Fixed Loader Table Size 1260 Subtract 88 if NOPRINT is specified

Condensed Symbol
Table

12n (n is the total number of control sections
and common areas in the loaded program)

Built only if you invoke the binder under TSO,
and space is available.

System Requirements 4000

Interpreting linkage editor output

Diagnostic output
Diagnostic information is written to the diagnostic output data set that is defined by a SYSPRINT DD
statement. The diagnostic report consists of a header and linkage editor messages. There are two types of
messages: module disposition, which are described in “Module disposition messages” on page 168, and
error/warning messages, which are described in z/OS MVS System Messages, Vol 8 (IEF-IGD).

Output listing header
The output listing header includes:

• The time, day of the week, and date that the link-edit job was run.
• The job name you have specified and the job step name.
• The invocation parameters you have specified.
• The amount of working storage used and the output buffer size. These two values are shown as:

Using linkage editor and loader

Appendix A. Using the linkage editor and batch loader 167

– ACTUAL SIZE=(value1,value2)

where:
value1 =

The actual amount of working storage that the linkage editor used and not the value you requested.
value2 =

The actual output buffer size and not the value you requested.
• The name of the SYSLMOD data set and its volume.

Invalid options and attributes are replaced by INVALID in the output listing header. If incompatible
attributes are specified, additional messages are generated.

Module disposition messages
Module disposition messages are generated for each load module produced. There are two groups of
messages. The first group of disposition messages describes the handling of the load module. These
messages are:

• member name ADDED AND HAS AMODE addressing mode
• member name REPLACED AND HAS AMODE addressing mode
• member name DID NOT PREVIOUSLY EXIST BUT WAS ADDED AND HAS AMODE addressing mode

In this case, the replacement function was specified, but the member did not exist in the data set; the
module is added to the data set using the member name given.

• alias name IS AN ALIAS AND HAS AMODE addressing mode
• MODULE HAS BEEN MARKED NOT EXECUTABLE.
• LOAD MODULE HAS RMODE residence mode
• AUTHORIZATION CODE IS authorization code.

The second group of module disposition messages is generated when reenterable (RENT), reusable
(REUS), or refreshable (REFR) linkage editor options have been specified for the module. A message
indicates whether the load module has been marked reenterable or not reenterable, reusable or not
reusable, refreshable or not refreshable, depending on the option or options used.

The RENT/REUS/REFR message consists of MODULE HAS BEEN MARKED, followed by the attributes
assigned. The following messages are examples of some possible combinations:

• MODULE HAS BEEN MARKED REFRESHABLE.
• MODULE HAS BEEN MARKED NOT REFRESHABLE.
• MODULE HAS BEEN MARKED REUSABLE AND NOT REFRESHABLE.
• MODULE HAS BEEN MARKED REUSABLE AND REFRESHABLE.

When an error causes the linkage editor to mark a module not executable, only the MODULE HAS BEEN
MARKED NOT EXECUTABLE message appears; no attribute messages are generated.

Error/Warning messages
Certain conditions that are present when a module is being processed can cause error or warning
messages to be printed. These messages contain a message code and message text. If an error is
encountered during processing, the message code for that error is printed with the applicable symbol
or record in error. After processing is completed, the diagnostic message associated with that code is
printed.

The error warning messages have the following format:

IEW0mms message text

where:

Using linkage editor and loader

168 z/OS: z/OS MVS Program Management: User's Guide and Reference

IEW0
Indicates a linkage editor message

mm
Is the message number

s
Is the severity code, and can be one of the following values:
1

Indicates a condition that might cause an error during execution of the output module. A module
map or cross-reference table is produced if specified by you. The output module is marked
executable.

2
Indicates an error that could make execution of the output module impossible. Processing
continues. When possible, a module map or a cross-reference table is produced if specified by
you. The output module is marked not executable, unless the LET option is specified on the EXEC
statement.

3
Indicates an error that will make execution of the output module impossible. Processing
continues. When possible, a module map or a cross-reference table is produced if specified by
you. The output module is marked not executable.

4
Indicates an error condition from which no recovery is possible. Processing terminates. The only
output is diagnostic messages.

Note: A special severity code of zero is generated for each control statement printed as a result of the
LIST option. Severity zero does not indicate an error warning condition.

The highest severity code encountered during processing is multiplied by 4 to create a return code that
is placed in register 15 at the end of processing. This return code can be tested to determine whether
processing is to continue.

message text contains combinations of the following:

• The message classification (either error or warning)
• Cause of error
• Identification of the symbol, segment number (when in overlay), or input item to which the message

applies
• Instructions to the programmer
• Action taken by the linkage editor.

z/OS MVS System Messages, Vol 8 (IEF-IGD) contains a complete list of the linkage editor error and
warning messages.

Sample diagnostic output
Figure 44 on page 170 shows the format of the diagnostic output for the linkage editor. No optional output
was requested other than the list of control statements.

Using linkage editor and loader

Appendix A. Using the linkage editor and batch loader 169

A z/OS V1 R3 LINKAGE EDITOR 16:52:40 MON JANUARY 28,2002
 JOB MAINRUN STEP LINKEDIT
 INVOCATION PARAMETERS - LET,NCAL,XREF,LIST
 ACTUAL SIZE=(317440,86016)
 OUTPUT DATA SET USER.LOADLIB IS ON VOLUME SYS086

B IEW0000 NAME BBBBBBBB(R)
 IEW0461 CCCCCCCC
 IEW0461 BASEDUMP

C ** BBBBBBBB ADDED AND HAS AMODE 24
 ** LOAD MODULE HAS RMODE 24
 ** AUTHORIZATION CODE IS 0.
 DIAGNOSTIC MESSAGE DIRECTORY

D IEW0461 WARNING - SYMBOL PRINTED IS AN UNRESOLVED EXTERNAL REFERENCE, NCAL WAS SPECIFIED

Figure 44. Diagnostic messages issued by the linkage editor

The figures on the left side of Figure 44 on page 170 indicate the portion of the diagnostic output being
described.
A

Is the output listing header. It contains a time and date stamp, invocation parameters specified by
you, storage and buffer sizes, and the name of the SYSLMOD data set and its volume. In this example,
MAINRUN and LINKEDIT are the user-specified job name and step name, respectively.

B
Is a list of control statements used (IEW0000) and the message codes (IEW0461) for error/warning
conditions discovered during processing. For error/warning message codes, the symbol in error, if
necessary, is also listed (CCCCCCCC and BASEDUMP).

C
Is a module disposition message indicating that the output module (BBBBBBBB) has been added to
the output module data set. The addressing and residency modes and the module authorization code
are listed.

D
Is the diagnostic message directory that contains the text of the error codes listed in item B.

Optional output
In addition to error/warning and disposition messages, the linkage editor can produce diagnostic output
as requested by you. This optional output includes a control statement listing, a module map, and a
cross-reference table.

Control statement listing
If the LIST option is specified on the EXEC statement, a listing of all linkage editor control statements is
produced. For each control statement, the listing contains a special message code, IEW0000, followed
by the control statement. Item B in Figure 44 on page 170 contains an example of a control statement
listing.

Module map
If the MAP option is specified on the EXEC statement, a module map of the output load module is
produced. The module map shows all control sections in the output module and all entry names in each
control section. Named common areas are listed as control sections.

For each control section, the module map indicates its origin (relative to zero) and length in bytes (in
hexadecimal notation). For each entry name in each control section, the module map indicates the
location where the name is defined. These locations are also relative to zero.

If the module is not in an overlay structure, the control sections are arranged in ascending order according
to their origins. An entry name is listed with the control section in which it is defined.

If the module is an overlay structure, the control sections are arranged by segment. The segments are
listed as they appear in the overlay structure, top to bottom, left to right, and region by region. Within

Using linkage editor and loader

170 z/OS: z/OS MVS Program Management: User's Guide and Reference

each segment, the control sections and their corresponding entry names are listed in ascending order
according to their assigned origins. The number of the segment in which they appear is also listed.

In any module map, the following are identified by a dollar sign:

• Blank common area
• Private code (unnamed control section)
• For overlay programs, the segment table and each entry table.

When the load module processed by the linkage editor does not have an origin of zero, the linkage editor
generates a one-byte private code (unnamed control section) as the first text record. This private code is
deleted in any subsequent reprocessing of the load module by the linkage editor.

Each control section that is obtained from a call library during automatic library call is identified by an
asterisk after the control section name.

At the end of the module map is the entry address, that is, the relative address of the main entry point.
The entry address is followed by the total length of the module in bytes; in the case of an overlay module,
the length is that of the longest path. Pseudoregisters, if used, also appear at the end of the module map;
the name, length, and displacement of each pseudoregister are given.

Figure 45 on page 171 contains a module map and cross-reference listing with four control sections.
There are three named control sections (ABC00, ABCSUB1, and ABCSUB2) and one unnamed control
section (designated by $PRIVATE). Control sections ABCSUB1 and ABCSUB2 were obtained from a call
library. Control section ABCSUB1 also has two additional entry points. The entry point for control section
ABCSUB2 is named ABCENT2.

 CROSS REFERENCE TABLE

 CONTROL SECTION ENTRY
 NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
 $PRIVATE 0 8
 ABC00 08 1004
 ABCSUB1* 100C DE
 ABCSUB1 100C ABCSUB1A 1016 ABCHLP1 108E
 ABCSUB2* 10E8 767
 ABCENT2 10E8

 LOCATION REFERS TO SYMBOL IN CONTROL SECTION LOCATION REFERS TO SYMBOL IN CONTROL SECTION
 31F ABCSUB1 ABCSUB1 325 ABCSUB1A ABCSUB1
 354 ABCENT2 ABCSUB2 360 ABCHLP1 ABCSUB1
 364 ABCSUB1A ABCSUB1
 ENTRY ADDRESS 08
 TOTAL LENGTH 1850

Figure 45. Linkage editor module map and cross-reference table

Cross-reference table
If the XREF option is specified on the EXEC statement, a cross-reference table is produced. The cross-
reference table consists of a module map and a list of cross-references for each control section. Each
address constant that refers to a symbol defined in another control section is listed with its assigned
location, the symbol referred to, and the name of the control section in which the symbol is defined. When
control sections are compiled together, and simple address constants are used to refer from one control
section to another (instead of using external symbols and entry names), the control section name is listed
as the symbol referred to.

For overlay programs, this information is provided for each segment; the number of the segment in which
the symbol is defined is also provided.

If a symbol is unresolved after processing by the linkage editor, it is identified by $UNRESOLVED in the
list. However, if an unresolved symbol is marked by the never-call function (as specified on a LIBRARY
control statement), it is identified by $NEVER-CALL. If an unresolved symbol is a weak external reference,
it is identified by $UNRESOLVED(W).

Figure 45 on page 171 includes a cross-reference table of the address constants in program ABC00.

Using linkage editor and loader

Appendix A. Using the linkage editor and batch loader 171

Linkage editor return codes
Control is passed to the linkage editor as a job step when the linkage editor is specified on an EXEC job
control statement in the input stream. When the job step is completed, the linkage editor passes a return
code to the control program.

The return code reflects the highest severity code recorded in any iteration of the linkage editor within
that job step. The highest severity code encountered during processing is multiplied by 4 to create the
return code; this code is placed into register 15 at the end of linkage editor processing. Table 14 on page
172 contains the return codes, the corresponding severity code, and a description of each.

Table 14. Linkage editor return codes. The table shows the return code, severity code, and description.

Return code Severity
code

Description

0 0 Normal conclusion

4 1 Warning messages have been listed; execution should be successful.

8 2 Error messages have been listed; execution might fail. The module is
marked not executable unless the LET option is specified.

12 3 Severe errors have occurred; execution is impossible.

16 4 Terminal errors have occurred; the processing has terminated.

Interpreting batch loader output
The batch loader output consists of a collection of diagnostic and error messages and an optional storage
map of the loaded program. The output is produced in the data set defined by the SYSLOUT DD and
SYSTERM DD statements. If these statements are omitted, no output is produced.

SYSLOUT output includes a heading, and the list of options and defaults requested through the PARM field
of the EXEC statement. The SIZE stated is the size obtained, and not necessarily the size requested in the
PARM field. Error messages are written when the errors are detected. After processing is complete, an
explanation of the error is written. z/OS MVS System Messages, Vol 8 (IEF-IGD) lists the batch loader error
messages.

SYSTERM output includes only numbered warning and error messages. These messages are written when
the errors are detected. After processing is complete, an explanation of each error is written.

The storage map includes the name and absolute address of each control section and entry point defined
in the loaded program. Each map entry marked with an asterisk (*) comes from the data set specified
on the SYSLIB DD statement. Two asterisks (**) indicate the entry was found in the link pack area;
three asterisks (***) indicate the entry comes from text that was preloaded by a compiler. The TYPE
column indicates what each entry on the map is used for: SD=control section, LR=label reference, and
PR=pseudoregister.

The map is written as the input to the batch loader is processed, so all map entries appear in the
same sequence in which the input ESD items are defined. The total size and storage extent of the
loaded program are also included. For PL/I programs, a list is written showing pseudoregisters with their
addresses assigned relative to zero. Figure 46 on page 173 shows an example of a module map. The
batch loader issues an informational message when the loaded program terminates abnormally.

Using linkage editor and loader

172 z/OS: z/OS MVS Program Management: User's Guide and Reference

 NAME TYPE ADDR NAME TYPE ADDR NAME TYPE ADDR NAME TYPE ADDR NAME TYPE ADDR

SAMPL2B SD 161E0 SAMPL2BA SD 16EC8 IHEMAIN SD 17CF8 IHENTRY SD 17D00 IHESPRT SD 17D10
SYSIN SD 17D48 IHEVQC * SD 17D80 IHEVQCA * LR 17D80 IHEVQB * SD 17FD8 IHEVQBA* LT 17FD8
IHEDIA * SD 183C0 IHEDIAA * LR 183C0 IHEIAB * LR 183C2 IHEVPE * SD 18608 IHEVPEA* LR 18608
IHEVPA * SD 18870 IHEVPAA * LR 18870 IHEVFC * SD 189D0 IHEVFCA * LR 189D0 IHEVPC * SD 189F8
IHEVPCA * LR 189F8 IHEVFE * SD 18BE8 IHEVFEA * LR 18BE8 IHEVSC * SD 18C08 IHEVSCA* LR 18C08
IHEDNC * SD 18CB8 IHEDNCA * LR 18CB8 IHEDOA * SD 18F30 IHEDOAA * LR 18F30 IHEDOAB* LR 18F32
IHEDMA * SD 19010 IHEDMAA * LR 19010 IHEVFD * SD 19108 IHEVFDA * LR 19108 IHEVFA * SD 19160
IHEVFAA * LR 19160 IHEVPB * SD 19248 IHEVPBA * LR 19248 IHEXIS * SD 193F0 IHEXISO* LR 193F0
IHEIOB * SD 19488 IHEIOBA * LR 19488 IHEIOBB * LR 19490 IHEIOBC * LR 19498 IHEIOBD* LR 194A0
IHESARC * LR 1A9CB IHESADD * LR 1A9DE IHESAFF * LR 1AA18 IHEPRT * SD 1AB70 IHEPRTA* LR 1AB70
IHEBEGA * LR 1AE28 IHEERR * SD 1AE68 IHEERRD * LR 1AE68 IHEERRC * LR 1AE68 IHEERRB* LR 1AE7C
IHEERRA * LR 1AE68 IHEERRE * LR 1B4E2 IHEIOF * SD 1B580 IHEIOFR * LR 1B580 IHEIOFA* LR 1B582
IHEITAZ * LR 1B81E IHEITAX * LR 18B2A IHEITAA * LR 1B83E IHEDCNR * SD 1B680 IHEDCNA* LR 1B860
IHEDCNB * LR 1B862 IHEIOD * SD 1BA50 IHEIODG * LR 1BA50 IHEIODP * LR 1BA52 IHEIODT* LR 1BB4A
IHEVTB * SD 1BCF0 IHEVTBA * LR 1BCF0 IHEVQA * SD 1BD78 IHEVQAA * LR 1BD78

IHEQINV PR 00 IHEGERR PR 4 SAMPL2BB PR 8 SAMPL2BC PR C IHEQSPR PR 10
SYSIN PR 14 IHEQLSA PR 18 IHEQLWO PR 1C IHEQLW1 PR 20 IHEQLW2 PR 24
IHEQLW3 PR 28 IHEQLW4 PR 2C IHEQLWE PR 30 IHEQLCA PR 34 IHEQVDA PR 38
IHEQFVD PR 3C IHEQFCL PR 40 IHEQFOP PR 48 IHEQADC PR 4C IHEQXLV PR 50
IHEQEVT PR 58 IHEQSLA PR 60 IHEQSAR PR 64 IHEQLWF PR 68 IHEQRTC PR 6C
IHEQDFC PR 70

IEW1001 IHEUPBA
IEW1001 IHEUPAA
IEW1001 IHETERA
IEW1001 IHEM91C
IEW1001 IHEM91B
IEW1001 IHEM91A
IEW1001 IHEDDOD
IEW1001 IHEVPFA
IEW1001 IHEVPDA
IEW1001 IHEDBNA
IEW1001 IHEVSFA
IEW1001 IHEVSBA
IEW1001 IHEVCAA
IEW1001 IHEVSAA
IEW1001 IHEDNBA
IEW1001 IHEUPBB
IEW1001 IHEUPAB
IEW1001 IHEVSEB

 TOTAL LENGTH 5068
 ENTRY ADDRESS 17D00

IEW1001 WARNING – UNRESOLVED EXTERNAL REFERENCE (NOCALL SPECIFIED)

Figure 46. Batch loader module map

Batch loader return codes
The return code of a loader step is determined by the return codes resulting from batch loader processing
and from loaded program processing.

The return code indicates whether errors occurred during the execution of the loader or of the loaded
program. The return code can be tested through the COND parameter of the JOB statement specified for
this job or the COND parameter of the EXEC statement specified in any succeeding job step (see z/OS MVS
JCL User's Guide). Table 15 on page 173 shows the return codes.

Note: Error diagnostics (SYSLOUT or SYSTERM data set, or both) for the loader will show the severity of
errors found by the loader.

Table 15. Batch loader return codes. The table shows the code returned to the caller, the loader return code, the program
return code, and the description.

Code
returned to
caller

Loader
return code

Program
return code

Description

0 0 0 Program loaded successfully, and execution of the loaded program was
successful.

0 4 0 The batch loader found a condition that might cause an error during execution,
but no error occurred during execution of the loaded program.

0 8(LET) 4 The batch loader found a condition that might cause an error during execution,
but no error occurred during execution of the loaded program.

4 0 4 Program loaded successfully, and an error occurred during execution of the
loaded program.

Using linkage editor and loader

Appendix A. Using the linkage editor and batch loader 173

Table 15. Batch loader return codes. The table shows the code returned to the caller, the loader return code, the program
return code, and the description. (continued)

Code
returned to
caller

Loader
return code

Program
return code

Description

4 4 4 The batch loader found a condition that might cause an error during execution,
and an error did occur during execution of the loaded program.

4 8(LET) 4 The batch loader found a condition that might cause an error during execution,
and an error did occur during execution of the loaded program.

8 0 8 Program loaded successfully, and an error occurred during execution of the
loaded program.

8 4 8 The batch loader found a condition that might cause an error during execution,
and an error did occur during execution of the loaded program.

8 8(LET) 8 The batch loader found a condition that might cause an error during execution,
and an error did occur during execution of the loaded program.

8 8 The batch loader found a condition that could make execution impossible. The
loaded program was not executed.

12 0 12 Program loaded successfully, and an error occurred during execution of the
loaded program.

12 4 12 The batch loader found a condition that might cause an error during execution,
and an error did occur during execution of the loaded program.

12 8(LET) 12 The batch loader found a condition that might cause an error during execution,
and an error did occur during execution of the loaded program.

12 12 The batch loader could not load the program successfully; execution
impossible.

16 0 16 Program loaded successfully, and the loaded program found a terminating
error.

16 4 16 The batch loader found a condition that might cause an error during execution,
and a terminating error was found during execution of the loaded program.

16 8(LET) 16 The batch loader found a condition that might cause an error during execution,
and a terminating error was found during execution of the loaded program.

16 16 The batch loader could not load program; execution impossible.

Loader serviceability aids
The following are serviceability aids provided in the loader:

• The control section, HEWLDDEF, contains the loader option default values. It is resident in load module
HEWLOADR.

• A storage dump will typically produce information on the nature of the error. Register 11 will contain
a pointer to HEWLDCOM, and register 12 will contain the base register associated with the CSECT in
control.

• All nine save areas are forward and backward chained. Lower-level save areas will be printed. A
hexadecimal "FF" in word 4 of the save area indicates that the routine represented by the save area
has returned control. At the entry point to each module, register 13 contains the save area address and
register 14 contains the return address.

• Input/output control information is contained in the loader communication area. This information
consists of the DECB address, the buffer locations, the block size, the logical record length, the blocking
factor, the number of records left in the buffer, the address of the current record, and the associated
switches.

Using linkage editor and loader

174 z/OS: z/OS MVS Program Management: User's Guide and Reference

• Appropriate diagnostic messages are produced when an error has been detected. The message has a
specific number and, where appropriate, lists the data in error. The message number and text are listed
by HEWLLIBR at the end of loading.

• The loader uses the SYNADAF macro to obtain information regarding permanent I/O errors, and lists the
information on the SYSLOUT data set.

In addition to the above, you may choose to use the AMBLIST service aid to print the contents of the input
object modules, load modules, or program objects. See “The AMBLIST service aid” on page 153.

Using linkage editor and loader

Appendix A. Using the linkage editor and batch loader 175

Using linkage editor and loader

176 z/OS: z/OS MVS Program Management: User's Guide and Reference

Appendix B. Summary of Program Management user
considerations

Migrating from the linkage editor to the binder
The binder has replaced the linkage editor and batch loader programs as the system default linker and
linker-loader, respectively. Except as noted in this section, the binder assumes all of the functions of the
other two linking programs. Invoking any of the common linkage editor or batch loader entry points, such
as IEWL, HEWL, LINK, and LOADER, will result in execution of the binder.

While the binder includes all of the functions of the linkage editor and batch loader, it is not fully
compatible with those programs. It was developed in response to many customer, vendor and internal
requirements requesting relief from various restrictions and processing anomalies in the older programs.
The binder attempts to satisfy many of those requirements as well as provide a consistent processing
model. As a result it provides a set of externals, which is similar but not identical to the linkage editor and
batch loader externals.

The linkage editor and batch loader are also available in z/OS. There are no plans to withdraw either of
those programs at this time, but all users are encouraged to begin using the binder as early as possible. In
cases where the binder appears unsuitable for a specific application, the older programs are unchanged
and can be invoked by entry names HEWLKED or HEWLF064 (linkage editor) or HEWLDIA (batch loader).
Note, however, that all future enhancements will be made to the binder and loader exclusively. Other IBM
products might have dependencies on functions provided only by these components.

Installations that share DASD volumes between systems at different system levels must ensure that the
level of the binder being used matches the level of the system it is running on. In addition, users must be
sensitive to functional and format differences in binder processing and output if sharing modules between
different releases of z/OS.

SMP/E precautions
When using the System Modification Program Extended (SMP/E) for software installation, the system
programmer should be aware of the following: In z/OS, the binder is the default linker program invoked
by SMP/E. Because the binder handles some error conditions differently than did the linkage editor, it is
possible that certain error conditions might go unnoticed during the installation process.

Binder-detected errors that could cause the linked program to fail during execution are reported with
an error message and a return code 8 being passed back to SMP/E. In cases where conflicting input
might or might not represent an error, a warning message and return 4 will be provided. Since SMP/E
recommends that users specify a maximum return code of 8 in the linkedit utility entry in the global
zone, conflicting or incomplete input to the binder might go undetected during SMP/E APPLY processing.
Because the binder's default action in these error situations might be different from that of the linkage
editor, the results of the installation might be different with the binder. System programmers are strongly
encouraged to check all severity 8 error messages from the binder.

Storage considerations using the binder
The binder requires a larger region than does the linkage editor. This is because the binder has relaxed
most of the restrictions inherent in the linkage editor, replacing fixed-length tables with open-ended lists
that require more storage. In addition, the binder does not use a DASD work file for spilling module data
when processor storage has been exhausted, as does the linkage editor. The SYSUT1 DD statement is
ignored. Instead, it uses primary or data space storage for all module data. Because of the free-form
design of the binder's internal data structures and the number of controlling factors involved, it is not
possible to accurately predict binder storage requirements.

Program Management user considerations

© Copyright IBM Corp. 1991, 2021 177

It is recommended that the binder be given a region of at least 2 MB, larger for very large modules
or modules consisting of a large number of CSECTs, external names or address constants. Most binder
working storage will be obtained from above 16MB, if sufficient space is available in the extended private
area. Installations that restrict the extended region size default through use of the IEFUSI installation exit
might force the binder to obtain its storage from the private area below 16MB. In such cases, the binder
user might be forced to specify a very large region size, such as 16M, in order to obtain sufficient storage
in the extended region.

Message IEW2971T can be issued for a very large module. The solution is for the system programmer
to change the behavior of the installation's IEFUSI exit. For proper Binder operation when linking very
large modules (especially C++ or Java™ modules) the exit should permit multi-megabyte data spaces. In
exceptional situations, such as when installing a large product using SMP/E, IEFUSI algorithms could be
temporarily modified to allow larger data spaces.

It is also recommended that binder users do not specify SIZE or WKSPACE as a binder execution
parameter, unless the binder will be co-resident with another processing program. Either of these options
will limit the amount of storage available to the binder and, if insufficient, might cause the binder to fail
with an out-of-storage condition. The problem is aggravated if insufficient extended region is available
and all binder working storage is forced below 16MB.

Error handling in the binder
The binder is less tolerant of errors and inconsistencies in its input than was the linkage editor. Error
conditions were frequently ignored or overridden by the linkage editor, which might or might not be what
the user intended. Often such errors and the resulting system action went unreported.

The binder attempts to diagnose all such error conditions and take a course of action that is consistent
with its general processing model. Input modules and other files that are inaccessible or are in an
incorrect format will generally be omitted. Control statements and parameters containing invalid syntax or
data will also be discarded. All such errors will result in an error message and a return code 8. Conflicting
and inconsistent specifications and data might result in either a warning (severity 4) or error (severity 8)
being issued, depending on the seriousness of the condition and the likelihood of program failure during
execution.

As a result, the binder issues many more messages than did the linkage editor. The binder contains nearly
four times the number of unique error messages as did the linkage editor and batch loader combined, in
an effort to more accurately diagnose error conditions.

Changes and extensions in output using the binder
The binder provides significant extensions in output, such as, error messages, output listings, information
included, for example:

• Messages are more numerous, accurate and informative. (In fact, users can choose to use MSGLEVEL to
suppress some messages.)

• Output listings provide information about the binding job, more alias information, and operational and
summary data.

• Output listings include the binder release level, processing options and program attributes.
• Default for output listings is LIST=SUMMARY. This will cause the following (more than for the linkage

editor) to be printed:

– Target library (SYSLMOD) description
– Processing options
– Date/time of SAVE
– Module attributes (that are stored in directory)
– Entry points

Program Management user considerations

178 z/OS: z/OS MVS Program Management: User's Guide and Reference

• By specifying the MAP option, output listings will also include the source of each CSECT in the module,
specifically the ddname, member name, concatenation number, and a cross-reference table of ddname
to dsname.

If you do not want to receive all of this output, several options are available to limit the amount of printed
material produced during binder processing:

• The LIST option can be used to limit the volume of automatic printed output, such as the echoing of
control statements and the generation of the processing summary report.

• Not specifying the MAP and XREF options will significantly reduce the amount of printed output
generated for those reports.

• Specifying MSGLEVEL will allow you to suppress messages below a certain severity level.
• Specifying the suboption NOIMPort on the LIST option will suppress the echoing of import statements

for DLLs.

Note: Remember that limiting binder printed output in any of these ways might hide problems in your
module.

Binder control statements and options
Note: Certain processing differences must be considered when migrating from the linkage editor to the
binder. Subtle differences in the way control statements and options are processed might affect the
resultant load module or program object. Differences between PDS and PDSE libraries might also affect
the results. Some of these differences are described below.

Several of the binder control statements and processing options have interrelated functions. The binder
attempts to process both in a consistent way, even though the processing can deviate from that of the
linkage editor. Toward this end, the following rules are observed when processing data from all sources
(included modules, control statements, specified options or API function calls):

• Control statements always override the corresponding batch parameters. The scope of the control
statement is the module in process.

• Batch parameters, including those specified on the STARTDialog function call, always override the input
module, such as ESD data. The scope of the batch parameters is the entire binder invocation or dialog.

• Module data always prevails over binder default values.
• If duplicate specifications are encountered, the most recent specification will prevail. That is, the binder

processes the last occurrence of control statements and options. (The linkage editor processes the first
or last depending on option.)

– When there are multiple ENTRY statements (there should not be), the binder will process the last
ENTRY statement whereas the linkage editor will process the first ENTRY statement. This could result
in execution errors if conflicting ENTRY statements are present.

– Control statements and parameter strings are always processed in a left-to-right sequence. Function
calls are processed in the order received.

• Control statements and parameters containing invalid syntax, keywords or values, will be discarded and
reported as errors.

Binder processing differences from the linkage editor
The binder behavior might be different from the linkage editor in some significant ways:

• The linkage editor ignored data it didn't recognize or couldn't process. The binder also discards
nonprocessable input, but diagnoses the error with a message and nonzero return code.

• The linkage editor accepted the first ENTRY control statement encountered, whereas the binder
accepts the last. This could result in execution errors if the multiple statements specify conflicting
entry points.

• Unlike the linkage editor, explicit AMODE and RMODE specifications during binder processing always
override the corresponding attributes in the ESD of included modules. A new MIN value has been

Program Management user considerations

Appendix B. Summary of Program Management user considerations 179

provided for AMODE to allow ESD influence over the results. RMODE(MIN) is the default and can not be
specified.

– AMODE and RMODE are treated as independent options until they are needed during binder
processing. The linkage editor processes them as a pair. If only one of the pair is specified on either
the parm string or a control statement, the other will be set depending on the one specified. If neither
option is specified or both are specified, the binder will behave like the linkage editor. If only one is
specified, the results might be different.

– Many object modules, especially assembler programs and programs written for older compilers,
indicate AMODE(24) or RMODE(24) in their ESD records. Overriding these values at bind time will
produce warning messages IEW2646I and IEW2651I, one per section in error. The linkage editor
ignored the condition but the binder assumes that a valid error condition might exist. By specifying
the binder option COMPAT=LKED (see below), you can force the binder to suppress these messages
and leave the return code unchanged.

• Reusability (REUS, RENT and REFR) is handled differently by the binder. While the linkage editor
processes the attributes independently, the binder stores them as a single value. The binder assumes
that reenterable programs are also serially reusable, and the refreshable programs are also reenterable.
This should not cause any processing difficulties.

– The binder was designed to always accept an explicit override of a module attribute, whereas the
linkage editor sometimes does not. For example, although the JCL can specify RENT in the parm list,
when one CSECT being bound into a load module is reusable and the rest are reentrant, the linkage
editor ignores the external parameter and assigns the module as reusable. The binder will allow the
explicit override of RENT on the JCL to take priority.

• Since the release of the binder, customer feedback indicated there has been some dependence on the
internals of the linkage editor processing in two areas: module attribute defaulting and AMODE/RMODE
consistency.

– Many job streams specify RENT with the expectation that the linkage editor would look at all the
pieces and assign the highest level reusability it could, for example, the customer expected the
linkage editor to override any external parameters.

– Many programs in the field continue to be bound with inconsistent AMODE/RMODE specifications
that are known and ignored by the linkage editor.

As a result, an option (COMPAT=LKED) was added to the binder. When this is specified in the JCL the
binder will behave like the linkage editor in the following ways:

– The binder will ignore externally specified module reusability attributes if any of the included load
modules or program objects are of lesser reusability. A summary message is produced to show that
the overall reusability of the module was downgraded.

– AMODE/RMODE conflict messages (IEW2646I, IEW2651I) will not be issued by the binder when
conditions such as AMODE ANY modules are combined with AMODE 24 modules.

Note: It is essential that binder messages regarding reusability, AMODE and RMODE be analyzed. The
appropriate action in all such cases is to correct the input, and perhaps to rebind the program if the
attributes displayed in the binder Processing Summary are incorrect.

• The batch loader (HEWLDIA) can be used to load an in-storage object module. While this function is
not supported by the binder, the binder will invoke the batch loader transparently when this interface is
invoked. Applications that continue to use this interface cannot use any new functions provided by the
binder. This support is limited and provided for compatibility only.

Other binder processing differences
Some binder processes that differ from the linkage editor are not directly related to binder input. These
are affected by environmental differences, binder capacities and possible error conditions detected
during prior processing. In general, they are not directly controllable by binder specifications and should
be considered unpredictable.

Program Management user considerations

180 z/OS: z/OS MVS Program Management: User's Guide and Reference

• The order of modules included during autocall processing is not specifiable by the user and should
therefore be considered unpredictable. Due to different autocall algorithms in the two programs, the
sequence of includes will be different in the binder than it was in the linkage editor. If this sequence
is important, you should provide INCLUDE control statements in the input stream. (Be aware that this
only controls the order in which Csects are brought into storage by the binder. It does NOT control the
final order of the Csects in the load module or program object. That is controlled by the ORDER control
statement.)

• The binder handles nested INCLUDEs differently. It does not ignore all text following the nested
INCLUDE as does the linkage editor.

• Specifying uninitialized space in your source program and assuming it will be initialized might provide
unpredictable results during execution. Both the binder and the linkage editor fill part or all of such
data areas with binary zeros, but their algorithms are not the same. In addition, these algorithms are
dependent on a number of environmental factors such as the block size and the amount of space
remaining on a track.

– If the program is sensitive to the initial values stored in large data areas, the programmer must
ensure the storage is properly initialized, either at compile time or at program initialization time.

– You can cause the binder to initialize all uninitialized areas in a PM2 or later format program object
by specifying the FILL option. FILL allows you to initialize all uninitialized areas of the module and to
specify the byte used for initialization. FILL cannot be used for a PM1-format program object.

• The binder will not, by default, replace an executable program with a nonexecutable program. This is a
departure from linkage editor processing, where the new module would replace an existing module of
the same name regardless of the executability of either module. You might cause the binder to save a
nonexecutable module by specifying the STORENX option in the binder's PARM field.

• The binder will not save an alias or alternate entry point name if it is the primary name of an existing
member in the library. Like the linkage editor, if replace (R) has been specified on the NAME control
statement and the binder discovers that the name is an alias of another member in the library, that alias
will be “stolen” for the new module (load module or program object). Unlike the linkage editor, however,
if the binder discovers that the alias name already exists in the library as a primary (member) name, the
alias will not be stored.

Note: This design alternative was chosen to prevent users from inadvertently specifying as an alias
the name of an existing module, thereby destroying the existing module and possibly creating an
unrecoverable situation in the library.

• The binder bypasses LLA when retrieving a directory entry from a PDSE or PDS during INCLUDE
processing. The linkage editor first tries to obtain its directory entries from LLA. This means that if the
module was modified and not refreshed in LLA, the linkage editor would not get the latest version of the
module to process. The binder always gets the latest version by obtaining the directory entry directly
from the library directory on DASD.

• Unlike load modules, program objects cannot be zapped in place, that is, a new program object is
created in the PDSE and the old one is deleted (after all connections to it are released). This means that
LLA will continue to keep the old connection and will not see the modification unless that program is
explicitly refreshed.

• Other binder improvements:

– There can be up to 10 temporary modules (TEMPNAM0, TEMPNAM1, …).
– PDSEs and PDS's can be mixed in the concatenation. Unlike the linkage editor, the binder supports

SYSLIB and SYSLIN concatenation of object files with program libraries (both PDS's and PDSEs).
– The binder allows mixed case input (190 character set) specified with the option, CASE.
– Most of the binder resides above the-16 Mb line in ELPA. It runs in problem program state, user key.

Migrating from load modules to program objects
This section contains information for migrating from load modules to program objects.

Program Management user considerations

Appendix B. Summary of Program Management user considerations 181

What should be converted to program objects?
Following are considerations in determining whether or not to migrate to program objects:

• The only system library which supports program objects is SYS1.LINKLIB (plus all libraries in Linklist
concatenation). SYS1.LPALIB, SYS1.NUCLEUS, and SYS1.SVCLIB are opened and accessed during IPL
before the PDSE support is established and therefore can not be PDSEs.

– However, it is possible to put program objects into LPA using the Dynamic LPA functions. This
function opens the program libraries to be included dynamically after the system has been initialized,
thus allowing PDSE participation. The program objects can be in any user-specified authorized PDSE
program library.

• Program objects have the same restrictions as do data members in PDSEs. They cannot be accessed
using EXCP, nor can there be any TTR calculations done against them. Programs requiring this access
should not be converted.

• Program objects will occupy more space on DASD than did their load module counterparts. In load
module format, large uninitialized areas of the program were represented by gaps in the program text;
in the PM1 program object format those gaps are filled with binary zeros and written out to disk.
However, gaps are reinstated in program objects in PM2 format and later. They will still take more space
on DASD than load modules for several reasons. First, program objects are formatted on 4K boundaries
with the minimum size being 4K, and the algorithm for compacting uninitialized space differs from
that used by the linkage editor. Also, additional information is saved in program objects to allow faster
loading, and to enable rebinding of C-type modules (formerly the Language Environment prelinker
discarded the rebinding information when producing its output object module).

• If new program object features are exploited, such as a length greater than 16 megabytes, or more
than 32767 external names, greater than 8-byte names, multiple classes, multiparts, split-modes, or
deferred classes, the program object cannot be converted back to a load module.

• PDSE program libraries can take advantage of the PDSE cross-system sharing support offered in z/OS.
• As discussed earlier, special attention must also be given to mixing specific levels of the program object

with different z/OS releases.
• Only program objects can reside in z/OS UNIX files. Load modules are not supported.

Converting load modules to program objects
Once the environment has been established, program objects can be created. The data class definitions
for PDSEs and the JCL/catalog procedures can be used to provide implicit migration. Various utilities can
also be used to migrate modules explicitly. These include:

• IEBCOPY: can copy either single programs or entire libraries between PDS's and PDSEs. The binder is
invoked to do the conversion.

• DFDSS: provides the means for migrating one or a collection of load libraries. Conversion is only done on
a COPY operation, not on a DUMP/RESTORE.

• Binder: can be invoked to rebind modules for the purpose of migrating/converting them.
• OGETX can be used to copy load modules from a PDS library to z/OS UNIX files.

Compatibility of program object formats
• Downward Compatibility: The default program object format is the earliest which will support the

function requested by the contents of the input modules and the processing directives.
• Upward Compatibility: All earlier PM functions, interfaces, formats and user job streams should work

compatibly with the current release. There will be some changes in report formats and messages, where
changes are necessary for this new function.

• Only PM1 format program objects support overlay format. The binder will automatically produce a PM1
version of the program object if overlay is requested and the SYSLMOD data set is a PDSE.

Program Management user considerations

182 z/OS: z/OS MVS Program Management: User's Guide and Reference

• During API processing for “intent access” the module will be saved in the same format it had on input if
followed by a copy operation. During API processing for “intent bind” (and both libraries are PDSEs), the
module will be saved in the lowest format program object which will support the requested functions
unless overridden with the COMPAT option.

• If the user specifies a COMPAT value and attempts to use functions not supported by that level, the save
will fail with RC=12.

Utilities, components and products that support program objects
The following is a partial list of components and products that support program objects:

• Program objects are supported by the following DFSMS utilities/services:

– IEBCOPY
– IEBCOMPR
– IEHLIST
– IEHPROGM

• Program objects are not supported by the following DFSMS utilities:

– IEHMOVE
– IEBDG
– IEBGENER
– IEBPTPCH

• DFdss support includes:

– DUMP and RESTORE of PDSE Program Libraries, but without conversion, for example, a dumped
PDSE Program Library can not be restored to a PDS.

– COPY between PDSE and PDS Program Libraries. The binder will be invoked automatically and each
of the members will be converted.

• ISPF supports the copy of PDSE program libraries or members. The binder options are supported
transparently in background (option 5.7); the foreground (option 4.7) invokes the TSO LOAD/GO
Prompter which invokes the binder.

• TSO/E Test supports program objects in PM1 format or which have contents compatible with PM1
format. Also, it can only obtain information from those program objects for which the DCB used to load
them from their program libraries is accessible. This means that TSO/E Test can not be used to test
program objects that were loaded by LLA or loaded into LPA.

The following is a partial list of components and products that do not support program objects:

• Program objects are not supported by the following DFSMS utilities:

– IEHMOVE
– IEBDG
– IEBGENER
– IEBPTPCH

PDSE program library directory access of program objects
There are some changes in the way that PDSE directories can be accessed for program libraries. They
include:

• PDSE program object directory entries have been extended. Information about the type of member can
be obtained via the directory entry, though not as directly as ISITMGD. (Multiple tests continue to be
required because the program object indicator in a program directory entry is located in the same place
as the user data field for a data directory entry.)

Program Management user considerations

Appendix B. Summary of Program Management user considerations 183

• You can still use BLDL to access PDSE program directory entries. The format is converted to the current
format, with some modifications when the program object exceeds 16 meg.

• The IHAPDS mapping, which maps the PDS directory entry information returned by the BLDL macro, has
changed in order to support program objects and accommodate the >16-Meg program objects.

– There is a bit (PDS2LFMT) which indicates that the load module is a program object and that the
PDS2FTB3 flags are valid and contain additional information.

– There is a bit (PDS2BIG) that indicates that the length field (PDS2STOR) does not hold the module
length and that the large load module extension exists. The PDS2VSTR field in this extension contains
the fullword load module length in this case, and PDS2STOR contains a zero.

• A second directory service, DESERV, supports both PDS and PDSE libraries. You can issue DESERV for
either PDS or PDSE directory access, but you must pass the DCB address. It does not default to a
predefined search order, as does BLDL. DESERV returns an SMDE that, for PDSE directories, contains
more information than is mapped by IHAPDS.

• You can still read PDSE Program Library directories using BSAM. The format of each directory entry will
be converted, as is done with BLDL.

• As with all PDSE, one cannot access PDSE Program Libraries using EXCP.
• Applications that need to know if a data set is a PDSE program library can issue an external macro,

ISITMGD, to get this information. The data set must be open at the time. This macro is documented in
z/OS DFSMS Macro Instructions for Data Sets and also discussed in z/OS DFSMS Using Data Sets.

Migrating from the prelinker
Users presently using the prelinker-based (tactical) design can convert to the binder-based (strategic)
solution with minimal effort. Recompilation of existing modules is unnecessary. Rebinding of existing
support libraries, such as C370LIBs and SCEELKED, into PDSE format is unnecessary.

The two DLL designs can coexist in the same system or complex without special precautions. This will
allow migration of applications to the new support, one at a time.

The binder incorporates Language Environment/370 prelinker functions
The binder incorporates the functions of the Language Environment/370 prelinker, specifically the
handling of long names and support for the C WSA (writable static area) as a newly defined “deferred”
class, thus removing the need for a separate prelinker step when the target program library is either a
PDSE or z/OS UNIX file.

Note: The C prelinker, also known as the C pre-link utility, is currently known as the Language
Environment/370 prelinker. They are all the same utility, which is referred to herein as the prelinker.

Processing with the prelinker
The output from the C or C++ compiler is an extended object file (XOBJ). As shown in Figure 47 on page
185, the prelinker then uses one or more of these XOBJ object files as input together with the prelinker
control statements (INCLUDE, LIBRARY, and RENAME) to create a traditional object module. The prelinker
performs autocalls for unresolved references by including object modules from PDS libraries, C370LIB
libraries, or z/OS UNIX archive files.

Output from the prelinker is then fed into either the binder or linkage editor, both of which use autocall to
resolve any remaining references to non-C routines. The linkage editor always creates a load module as
output. The binder's output module can be either a load module or program object, depending on whether
the SYSLMOD DD statement specifies a PDS or PDSE program library or a z/OS UNIX file.

Processing without the prelinker
As before, the C/C++ compiler takes the source program and produces an XOBJ. The binder has been
extended to accept not only object modules (in all structures, for example, traditional, XOBJ and GOFF),
load modules, program objects and z/OS UNIX files, as earlier, but also z/OS UNIX archive files and

Program Management user considerations

184 z/OS: z/OS MVS Program Management: User's Guide and Reference

C370LIBs for autocall functions. It also accepts all prelinker control statements. In addition, a C renaming
routine was added to the existing interface validation logic in the binder. The result is that the prelinker
step can be eliminated when SYSLMOD specifies a PDSE program library because all the work previously
performed by the prelinker is now done by the binder. (This control flow is shown on Figure 48 on page
186.)

Eliminating the prelinker step has several advantages:

• Improved performance with the elimination of a job step
• Easier incorporation of new functions, released from the format restrictions imposed by an intermediate

data structure
• Rebindable module as output, for example, it is not necessary to return to object files to rebind
• More efficient code distribution and servicing since single object files can be shipped in PTFs rather than

the fully bound C module.

C Pre-
Linker

Source
Program

C/C++
Compiler

XOBJ

OBJ

PDS OBJ

C370LIB

Archive

PDS OBJ

Loadmod

ProgObj

PDS, PDSE or
z/OS UNIX file
(if Binder)

Linkedit/
Binder

PO or
LoadMod

Control
Stmts

Call
Library

Call
Library

Figure 47. Invoking the prelinker

Program Management user considerations

Appendix B. Summary of Program Management user considerations 185

Call
Library

Source
Program

C/C++
Compiler

XOBJ

a) C370LIB
b) PDS Obj
c) Loadmod
d) ProgObj
e) z/OS UNIX Archive
f) z/OS UNIX file

PDSE
Program
Library of z/OS UNIX file

Binder

Program
Object

Control
Stmts

Loader

Figure 48. Prelinker elimination

Support for DLL modules in dynamic link libraries
The binder supports dynamic linking via the use of DLLs. Dynamic linking provides the ability to defer
the binding of functions and variables until execution. Binder generated DLLs are program objects with a
special control structure to which defines exported functions and data items. DLL-enabled applications
can access ("import") these functions and data items during execution. The creation of DLLs and DLL
clients requires a language translator that can generate the requisite structures in an output XOBJ or
GOFF object module.

Migrating from the prelinker and to DLLs

Migrating from the prelinker to Binder
Users must ensure that their JCL and the cataloged procedures they are invoking are changed to eliminate
the prelinker step.

Note: The c89 command in z/OS UNIX will bypass the prelinker and compilers such as the IBM C/C++
compiler may provide new cataloged procedures that will use the binder for prelinker functions.

The following considerations apply if you are converting JCL yourself. It is assumed that you have already
performed any necessary conversion from the linkage editor to the binder.

• The members of the SYSLIB concatenation used in the prelink step should be concatenated before the
SYSLIB members used in the bind step.

Program Management user considerations

186 z/OS: z/OS MVS Program Management: User's Guide and Reference

• Specify CASE(MIXED) as a binder option to preserve case sensitivity.
• The contents of the prelinker SYSIN can be used as the binder SYSLIN or concatenated with it, or

explicitly included by a binder INCLUDE control statement.
• SYSLMOD must be allocated to a PDSE or an z/OS file.
• If SYSDEFSD was being used for the prelinker step, it should be added to the bind step.
• If a DLL-enabled module is produced, DYNAM(DLL) must be specified. The prelinker produced a DLL-

enabled module if the input XOBJ was DLL-enabled. The binder requires an explicit directive.
• If the prelinker UPCASE option was being used, it can be specified as a binder option. However it might

not be necessary since the binder provides better support for long and mixed case names.
• Prelinker control statements, including RENAME and IMPORT, can be moved from the prelink step to the

bind step.

Restrictions and incompatibilities migrating from the prelinker
• You must continue to use the prelinker if your target library is a PDS.
• If the prelinker is used at all, all object modules requiring prelinking must be processed together by

the prelinker. In other words you cannot combine object modules created by the prelinker or load
modules/program objects containing such together with XOBJ modules as input to a single bind.

• The prelinker allows names to be multiply defined, once for function names and once for variable
names. The binder will use the first occurrence of a given name without regard to whether it is code or
data.

• The binder does not support the version of the LIBRARY control statement that was used by the
prelinker to trigger automatic library call. The unsupported version is the one whose syntax is “LIBRARY
ddname”. This is being replaced by the new binder AUTOCALL control statement.

• Code generated with the C/C++ compiler option IPA(NOLINK,NOOBJECT) should not be given as input
to the binder.

Migration of applications to DLL support
Migration of applications to DLLs require that the user:

• Identify those modules that will be dynamically linked
• Recompile the DLL modules with #pragma export or the EXPORTALL option (in the C language)
• Bind those DLLs into the PDSE dynamic link library
• Remove the imported modules from the static bind library
• Rebind the application

Note: For guidance on how to create DLLs and dynamic link libraries, see z/OS Language Environment
Programming Guide.

Program Management user considerations

Appendix B. Summary of Program Management user considerations 187

Program Management user considerations

188 z/OS: z/OS MVS Program Management: User's Guide and Reference

Appendix C. Binder return codes

The binder can be executed either as a JCL job step through TSO, through a macro call from another
program, or through the binder application programming interface. The return codes are interpreted
differently based on how you are executing the binder.

IEWBLINK return and reason codes
The meaning of the return codes when invoking the binder at entry point IEWBLINK are described in Table
16 on page 189.

Table 16. IEWBLINK return codes

Retur
n
code

Batch execution
description

Application Programming Interface (API) description

0 Informational: the program
was saved and is
executable.

Informational: the function was performed exactly as requested.

4 Warning: a warning
condition was noted but
should have no effect on the
program module. Processing
continues with no action
required.

Warning: a warning condition was noted but should have no effect on the
requested function. Processing continues with no action required.

8 Error message: The binder
found an error in user
data and has taken an
appropriate default. The
integrity of the output
module is assured but might
be incorrect or incomplete.
The program module is
saved and, if LET or LET(8)
were specified, it is marked
executable.

Error message: The binder found an error in user data and has taken
an appropriate default. The integrity of the output parameter data is
assured, but it might be null or incorrect.

12 Severe error message:
the error encountered has
prevented the process from
completing. The resulting
program module, if any,
should be considered
unusable.

Severe error message: the error encountered has prevented the
process from completing. The function was not performed, and output
parameters (except for return and reason codes) should not be used in
any way.

16 Terminating error message:
processing is terminated
immediately.

Terminating error message: processing is terminated immediately. This
return code might be accompanied by an 0F4 abend.

IEWBLDGO return codes
Table 17 on page 190 contains descriptions of the return codes from the binder link-load-and-go entry
point.

Binder return codes

© Copyright IBM Corp. 1991, 2021 189

Table 17. IEWBLDGO return codes

Return code Description

0 The binder linked and loaded the program, and the program executed successfully.

12 A link error occurred whose severity is greater than that specified on the LET option.
The program is not loaded or executed.

16 The binder linked and loaded the program, but the program abended during execution.

n The binder linked and loaded the program, but the program set other than a zero
return code in register 15. “n” is the program's return code.

Binder return codes

190 z/OS: z/OS MVS Program Management: User's Guide and Reference

Appendix D. Designing and specifying overlay
programs

The use of overlay programs is not recommended. The information in this appendix is provided for
compatibility only. Overlay programs only support load module and PM1. Therefore, any PM format later
than PM1 is not supported. Program objects specifying OVLY cause the binder to create either a load
module or a PM1 format program object, depending on the library type.

Ordinarily, when a program module produced by the binder is executed, all the control sections of the
module remain in virtual storage throughout execution. The length of the module, therefore, is the sum
of the lengths of all the control sections. When virtual storage is not at a premium, this is the most
efficient way to execute a program. However, when a program approaches the limits of the available
virtual storage, you could consider using the overlay facilities of the binder.

In most cases, all that is needed to convert an ordinary program to an overlay program is the addition of
control statements to structure the module. You choose the portions of the program that can be overlaid,
and the system arranges to load the required portions when needed during execution of the program.

When the binder overlay facility is requested, the program module is structured so that, at execution time,
certain control sections are loaded only when referenced. When a reference is made from an executing
control section to another, the system determines whether the code required is already in virtual storage.
If it is not, the code is loaded dynamically and can overlay an unneeded part of the module already in
storage.

This appendix is divided into three sections that describe the design, specification, and special
considerations for overlay programs.

Note: This appendix refers to binder processing and output. These concepts also apply to linkage editor
processing, unless otherwise noted, with the exception that the linkage editor cannot process program
objects.

Design of an overlay program
The structure of an overlay module depends on the relationships among the control sections within
the module. Two control sections do not have to be in storage at the same time to overlay each other.
Such control sections are independent; they do not reference each other either directly or indirectly.
Independent control sections can be assigned the same load addresses and are loaded only when
referenced. For example, control sections that handle error conditions or unusual data can be used
infrequently and need not occupy storage unless in use.

Control sections are grouped into segments. A segment is the smallest functional unit (one or more
control sections) that can be loaded as one logical entity during execution. The control sections required
all the time are grouped into a special segment called the root segment. This segment remains in storage
throughout execution of an overlay program.

When a particular segment is executed, any segments between it and the root segment must also
be in storage. This is a path. A reference from one segment to another segment lower in a path is a
downward reference; the segment contains a reference to another segment farther from the root segment
(see “Control section dependency” on page 192). Conversely, a reference from one segment to another
segment higher in a path (closer to the root segment) is an upward reference.

A downward reference might cause overlay because the necessary segment might not yet be in virtual
storage. An upward reference does not cause overlay because all segments between a segment and the
root segment must be present in storage.

Several paths sometimes need the same control sections. This problem can be solved by placing the
control sections in another region. In an overlay structure, a region is a contiguous area of virtual storage

Overlay Programs

© Copyright IBM Corp. 1991, 2021 191

within which segments can be loaded independently of paths in other regions. An overlay program can be
designed in single or multiple regions.

Single region overlay program
To design an overlay structure, you should select those control sections that receive control at the
beginning of execution plus those that should always remain in storage; these control sections form the
root segment. The rest of the structure is developed by determining the dependencies of the remaining
control sections and how they can use the same virtual storage locations at different times during
execution.

The remainder of this section discusses control section dependency, segment dependency, the length of
the overlay program, segment origin, communication between segments, and overlay processing.

Control section dependency
Control section dependency is determined by the requirements of a control section for <references to> or
<access to> a given <routine> of <entry point> in another control section. A control section is dependent
upon any control section from which it receives control or that processes its data. For example, if control
section C receives control from control section B, C is dependent upon B. That is, both control sections
must be in storage before execution can continue beyond a given point in the program.

Assume that a program contains seven control sections, CSA through CSG, and exceeds the amount of
storage available for its execution. Before the program is rewritten, it is examined to see if it could be
placed into an overlay structure. Figure 49 on page 193 shows the groups of dependent control sections
in the program (the arrows indicate dependencies).

Overlay Programs

192 z/OS: z/OS MVS Program Management: User's Guide and Reference

Figure 49. Control section dependencies

Each dependent group is also a path. That is, if control section CSG is executed, CSB and CSA must also
be in storage. Because CSA and CSB are in each path, they must be in the root segment. Control section
CSC is in two groups and therefore is a common segment in two different paths.

A better way to show the relationship between segments is with a tree structure. A tree graphically
shows how segments can use virtual storage at different times. It does not imply the order of execution,
although the root segment is the first to receive control. Figure 50 on page 194 shows the tree structure
for the dependent groups shown in Figure 49 on page 193. The structure has five segments and is
contained in one region.

Overlay Programs

Appendix D. Designing and specifying overlay programs 193

Figure 50. Single-region overlay tree structure

Segment dependency
When a segment is in virtual storage, all segments in its path are also in virtual storage. Each time a
segment is loaded, all segments in its path are loaded if they are not already in virtual storage. In Figure
50 on page 194, when segment 3 is in virtual storage, segments 1 and 2 are also in virtual storage.
However, if segment 2 is in storage, this does not imply that segment 3 or 4 is in virtual storage because
neither segment is in the path of segment 2.

The position of the segments in an overlay tree structure does not imply the sequence in which the
segments are executed. A segment can be loaded and overlaid as many times as the logic of the program
requires. However, a segment cannot overlay itself. If a segment is modified during execution, that
modification remains only until the segment is overlaid.

Length of an overlay program
For purposes of illustration, assume the control sections in the sample program have the following
lengths:
Control Section

Length (in bytes)
CSA

3000
CSB

2000
CSC

6000
CSD

4000
CSE

3000
CSF

6000

Overlay Programs

194 z/OS: z/OS MVS Program Management: User's Guide and Reference

CSG
8000

If the program were not in overlay, it would require 32000 bytes of virtual storage. In overlay, however,
the program requires the amount of storage needed for the longest path. In this structure, the longest
path is formed by segments 1, 2, and 3, because when they are all in storage they require 18000 bytes, as
shown in Figure 51 on page 195.

Figure 51. Length of an overlay module

Note: The length of the longest path is not the minimum requirement for an overlay program. When a
program is in overlay, certain tables are used, and their storage requirements must also be considered.
The storage required by these tables is described in “Special considerations” on page 208.

Segment origin
The binder assigns the relocatable origin of the root segment (the origin of the program) at 0. The relative
origin of each segment is determined by 0 plus the length of all segments in the path. For example, the
origin of segments 3 and 4 is equal to 0 plus 6000 (the length of segment 2) plus 5000 (the length of the
root segment), or 11000. The origins of all the segments are as follows:
Segment

Origin
1

0
2

5000
3

11000
4

11000

Overlay Programs

Appendix D. Designing and specifying overlay programs 195

5
5000

The segment origin is also called the load point, because it is the relative location where the segment is
loaded.

Figure 52 on page 196 shows the segment origin for each segment and the way storage is used by the
sample program. The vertical bars indicate segment origin; any two segments with the same origin can
use the same storage area. This figure also shows that the longest path is that of segments 1, 2, and 3.

Figure 52. Segment origin and use of storage

References between segments
Segments that can be in virtual storage simultaneously are considered inclusive. Segments in the same
region but not in the same path are considered exclusive; they cannot be in virtual storage simultaneously.
Figure 53 on page 197 shows the inclusive and exclusive segments in the sample program.

Overlay Programs

196 z/OS: z/OS MVS Program Management: User's Guide and Reference

Figure 53. Inclusive and exclusive segments

Segments upon which two or more exclusive segments are dependent are called common segments. A
segment common to two other segments is part of the path of each segment. In Figure 53 on page 197,
segment 2 is common to segments 3 and 4, but not to segment 5.

An inclusive reference is a reference between inclusive segments, from a segment in storage to an
external symbol in a segment that does not cause overlay of the calling segment. An exclusive reference is
a reference between exclusive segments, a reference from a segment in storage to an external symbol in
a segment that causes overlay of the calling segment.

Figure 54 on page 198 shows the difference between an inclusive reference and an exclusive reference.
The arrows indicate references between segments.

Inclusive references
Wherever possible, inclusive references should be used instead of exclusive references. Inclusive
references between segments are always valid and do not require special options. When inclusive
references are used, there is also less chance for error in structuring the overlay program correctly.

Exclusive references
An exclusive reference is made when the external reference in the requesting segment is to a symbol
defined in a segment not in the path of the requesting segment. Exclusive references are either valid or
invalid.

Overlay Programs

Appendix D. Designing and specifying overlay programs 197

An exclusive reference is valid only if there is also an inclusive reference to the requested control section
in a segment common to both the segment to be loaded and the segment to be overlaid. The same
symbol must be used in both the common segment and the exclusive reference. In Figure 54 on page
198, a reference from segment B to segment A is valid because there is an inclusive reference from the
common segment to segment A. (An entry table in the common segment contains the address of segment
A. The overlay does not destroy this table.)

Figure 54. Inclusive and exclusive references

In this same figure, a reference from segment A to segment B is invalid because there is no reference
from the common segment to segment B. A reference from segment A to segment B can be made valid by
including, in the common segment, an external reference to the symbol used in the exclusive reference to
segment B.

Another way to eliminate exclusive references is to arrange the program so that the references that
cause overlay are made in a higher segment. For example, you could eliminate the exclusive reference
shown in Figure 54 on page 198 by writing a new module to be placed in the common segment. The new
module's only function would be to reference segment B. The code in segment A could then be changed
to reference the new module instead of segment B. Control then would pass from segment A to the
common segment, where the overlay of segment A by segment B would be initiated.

If either valid or invalid exclusive references appear in the program, the binder considers them errors
unless one of the special options is used. These options are described later in this section (see “Special
considerations” on page 208).

Note:

1. During the execution of a program written in a higher level language such as Fortran, COBOL, or PL/I,
an exclusive call results in abnormal termination of the program if the requested segment attempts to
return control directly to the invoking segment that has been overlaid.

2. If a program written in COBOL includes a segment that contains a reference to a COBOL class test or
TRANSFORM table, the segment containing the table must be in either the root segment or a segment
higher in the same path than the segment containing the reference to the table.

Overlay process
The overlay process is initiated when a control section in virtual storage references a control section not
in storage. The control program determines the segment that the referenced control section is in and, if
necessary, loads the segment. When a segment is loaded, it overlays any segment in storage with the
same relative origin. Any segments in storage that are lower in the path of the overlaid segment can also
be overlaid. An exclusive reference can also cause segments higher in the path to be overlaid. No overlay
occurs if a control section in storage references a control section in another segment already in storage.

Overlay Programs

198 z/OS: z/OS MVS Program Management: User's Guide and Reference

The portion of the control program that determines when overlay is to occur is the overlay supervisor that
uses special tables to determine when overlay is necessary. These tables are generated by the binder and
are part of the output program module. The special tables are the segment table and the entry table(s).
Figure 55 on page 199 shows the location of the segment and entry tables in the sample program.

Figure 55. Location of segment and entry tables in an overlay module

Because the tables are present in every overlay module, their size must be considered when planning the
use of virtual storage. The storage requirements for the tables are given in “Special considerations” on
page 208. A detailed discussion of the segment and entry tables follows.

Segment table
Each overlay program contains one segment table (SEGTAB); this table is the first control section in the
root segment. The segment table contains information about the relationship of the segments and regions
in the program. During execution, the table also contains control information such as what segments are
in storage and which are being loaded.

Entry table
Each segment that is not the last segment in a path can contain one entry table (ENTAB); when present,
this table is the last control section in a segment.

When overlay is required, an entry in the table is created for a symbol to which control is passed, provided
the symbol is used as an external reference in the requesting segment, and the symbol is defined in
another segment either lower in the path of the requesting segment or in another region. An ENTAB entry
is not created for any symbol already present in an entry table closer to the root segment (higher in the

Overlay Programs

Appendix D. Designing and specifying overlay programs 199

path), or for a symbol defined higher in the path. (A reference to a symbol higher in the path does not have
to go through the control program because no overlay is required.)

If an external reference and the symbol it references are in segments not in the same path but in the
same region, an exclusive reference was made. If the exclusive reference is valid, an ENTAB entry for
the symbol is present in the common segment. Because the common segment is higher in the path of
the requesting segment, no ENTAB entry is created in the requesting segment. When the reference is
executed, control passes through the ENTAB entry in the common segment. That is, a branch to the
location in the ENTAB entry causes the overlay supervisor to be called to load the needed segments.

If the exclusive reference is invalid, no ENTAB entry is present in the common segment. If the LET
option is specified, an invalid exclusive reference causes unpredictable results when the program is
executed. Because no ENTAB entry exists, control is passed directly to the relative address specified in
the reference, even though the requested segment cannot be in virtual storage.

Multiple region overlay program
If a control section is used by several segments, it is usually desirable to place that control section in the
root segment. However, the root segment can get so large that the benefits of overlay are lost. If some
of the control sections in the root segment could overlay each other (except for the requirement that all
segments in a path must be in storage at the same time), the job might be a candidate for multiple region
structure. Multiple region structures can also be used to increase segment loading efficiency: processing
can continue in one region while the next path to be executed is being loaded into another region.

With multiple regions, a segment has access to segments that are not in its path. Within each region, the
rules for single region overlay programs apply, but the regions are independent of each other. A maximum
of four regions can be used.

Figure 56 on page 201 shows the relationship between the control sections in the sample program
and two new control sections: CSH and CSI. The two new control sections are each used by two other
control sections in different paths. Placing CSH and CSI in the root segment makes the segment larger
than necessary, because CSH and CSI can overlay each other. The two control sections should not
be duplicated in two paths, because the binder automatically deletes the second pair and an invalid
exclusive reference might then result.

Overlay Programs

200 z/OS: z/OS MVS Program Management: User's Guide and Reference

Figure 56. Control sections used by several paths

If the two control sections are placed in another region, however, they can be in virtual storage when
needed, regardless of the path being executed in the first region. Figure 57 on page 202 shows all the
control sections in a two-region structure. Either path in region 2 can be in virtual storage regardless of
the path being executed in region 1. Segments in region 2 can cause segments in region 1 to be loaded
without being overlaid themselves.

Overlay Programs

Appendix D. Designing and specifying overlay programs 201

Figure 57. Overlay tree for multiple-region program

The relative origin of a second region is determined by the length of the longest path in the first region
(18000 bytes). Region 2, therefore, begins at 0 plus 18000 bytes. The relative origin of a third region
would be determined by the length of the longest path in the first region plus the longest path in the
second region.

The virtual storage required for the program is determined by adding the lengths of the longest path in
each region. In Figure 57 on page 202, if CSH is 4000 bytes and CSI is 3000 bytes, the storage required is
22000 bytes, plus the storage required by the special overlay tables.

Care should be exercised when choosing multiple regions. There might be some system degradation
caused by the overlay supervisor being unable to optimize segment loading when multiple regions are
used.

Specification of an overlay program
Once you have designed an overlay structure, the program must be placed into that structure. You
indicate to the binder the relative positions of the segments, the regions, and the control sections in each
segment. Positioning is accomplished as follows:

Segments
Are positioned by OVERLAY statements. In addition, the overlay statement provides a means to
equate each load point with a unique symbolic name. Each OVERLAY statement begins a new
segment.

Regions
Are also positioned by OVERLAY statements. You specify the origin of the first segment of the region,
followed by the word REGION in parentheses.

Control sections
Are positioned in the segment specified by the OVERLAY statement with which they are associated in
the input sequence. However, the sequence of the control sections within a segment is not necessarily
the order in which the control sections are specified.

Overlay Programs

202 z/OS: z/OS MVS Program Management: User's Guide and Reference

The input sequence of control statements and control sections should reflect the sequence of the
segments in the overlay structure from top to bottom, left to right, and region by region. This sequence is
illustrated in later examples.

In addition, several special options are used with overlay programs. These options are specified on the
EXEC statement for the binder job step and are described at the end of this section.

Note: If a program module in overlay structure is reprocessed by the binder, the OVERLAY statements
and special options (such as OVLY) must be specified. If the statements and options are not provided, the
output program module will not be in overlay structure.

The symbolic origin of every segment, other than the root segment, must be specified with an OVERLAY
statement. The first time a symbolic origin is specified, a load point is created at the end of the previous
segment. That load point is logically assigned a relative address at the doubleword boundary that follows
the last byte in the preceding segment. Subsequent use of the same symbolic origin indicates that the
next segment is to have its origin at the same load point.

In the sample single-region program, the symbolic origin names ONE and TWO are assigned to the two
necessary load points, as shown in Figure 57 on page 202. Segments 2 and 5 are at load point ONE;
segments 3 and 4 are at load point TWO.

The following sequence of OVERLAY statements results in the structure in Figure 58 on page 203. (The
control sections in each segment are indicated by name.)

Control section CSA
Control section CSB
 OVERLAY ONE
Control section CSC
 OVERLAY TWO
Control section CSD
Control section CSE
 OVERLAY TWO
Control section CSF
 OVERLAY ONE
Control section CSG

Note: The sequence of OVERLAY statements reflects the order of segments in the structure from top to
bottom and left to right.

Figure 58. Symbolic segment origin in single-region program

Overlay Programs

Appendix D. Designing and specifying overlay programs 203

Region origin
The symbolic origin of every region, other than the first, must be specified with an OVERLAY statement.
Once a new region is specified, a segment origin from a previous region should not be specified.

In the sample multiple-region program, the symbolic origin THREE is assigned to region 2, as shown in
Figure 59 on page 204. Segments 6 and 7 are at load point THREE.

Figure 59. Symbolic segment and region origin in multiple-region program

If the following is added to the sequence for the single-region program, the multiple-region structure is
produced:

 .
 .
 .
 OVERLAY THREE(REGION)
Control section CSH
 OVERLAY THREE
Control section CSI

Control section positioning
After each OVERLAY statement, the control sections for that segment must be specified. The control
sections for a segment can be specified in one of three ways:

1. By placing the object decks for each segment after the appropriate OVERLAY statement
2. By using INCLUDE control statements for the modules containing the control sections for the segment

Overlay Programs

204 z/OS: z/OS MVS Program Management: User's Guide and Reference

3. By using INSERT control statements to reposition a control section from its position in the input
stream to a particular segment.

Any control sections that precede the first OVERLAY statement are placed in the root segment; they
can be repositioned with an INSERT statement. Control sections from the automatic call library are also
placed in the root segment. The INSERT statement can be used to place these control sections in another
specific segment. Common areas in an overlay program are described in “Special considerations” on page
208.

An example of each of the three methods of positioning control sections follows. Each example results
in the structure for the single-region sample program. An example is also given of repositioning control
sections from the automatic call library.

Using object decks
The primary input data set for this example contains an ENTRY statement and seven object decks,
separated by OVERLAY statements:

//LKED EXEC PGM=IEWBLINK,PARM='OVLY'
 .
 .
 .
//SYSLIN DD *
 ENTRY BEGIN
Object deck for CSA
Object deck for CSB
 OVERLAY ONE
Object deck for CSC
 OVERLAY TWO
Object deck for CSD
Object deck for CSE
 OVERLAY TWO
Object deck for CSF
 OVERLAY ONE
Object deck for CSG

The EXEC statement illustrates that the OVLY parameter must be specified for every overlay program to
be processed by the binder.

Using INCLUDE statements
The primary input data set for this example contains a series of control statements. The INCLUDE
statements in the primary input data set direct the binder to library members that contain the control
sections of the program.

//LKED EXEC PGM=IEWBLINK,PARM='OVLY'
 .
 .
 .
//MODLIB DD DSNAME=USER.OBJLIB,DISP=OLD
//SYSLIN DD *
 ENTRY BEGIN
 INCLUDE MODLIB(CSA,CSB)
 OVERLAY ONE
 INCLUDE MODLIB(CSC)
 OVERLAY TWO
 INCLUDE MODLIB(CSD,CSE)
 OVERLAY TWO
 INCLUDE MODLIB(CSF)
 OVERLAY ONE
 INCLUDE MODLIB(CSG)

In this example, the control sections of the program are not part of the primary input data set, but are
represented in the primary input by the INCLUDE statements. When an INCLUDE statement is processed,
the appropriate control section is retrieved from the library and processed.

Overlay Programs

Appendix D. Designing and specifying overlay programs 205

Using INSERT statements
When INSERT statements are used, the INSERT and OVERLAY statements can either follow or precede all
the input modules. However, the order of the control sections in a segment is not necessarily the same as
the order of the INSERT statements for each segment. An example of each is given, as well as an example
of repositioning automatically called control sections.

Following all input
The control statements can follow all the input modules, as shown in the following example:

//LKED EXEC PGM=IEWBLINK,PARM='OVLY'
 .
 .
 .
//SYSLIN DD DSNAME=USER.OBJECT,DISP=OLD
// DD *
 ENTRY BEGIN
 INSERT CSA,CSB
 OVERLAY ONE
 INSERT CSC
 OVERLAY TWO
 INSERT CSD,CSE
 OVERLAY TWO
 INSERT CSF
 OVERLAY ONE
 INSERT CSG

The primary input data set contains the object modules for the control sections, and the input stream is
concatenated to it.

Preceding all input
The control statements can also precede all input modules, as shown in the following example:

//LKED EXEC PGM=IEWBLINK,PARM='OVLY'
//MODULES DD DSNAME=USER.OBJSEQ,DISP=OLD
 .
 .
 .
//SYSLIN DD *
 ENTRY BEGIN
 INSERT CSA,CSB
 OVERLAY ONE
 INSERT CSC
 OVERLAY TWO
 INSERT CSD,CSE
 OVERLAY TWO
 INSERT CSF
 OVERLAY ONE
 INSERT CSG
 INCLUDE MODULES

The primary input data set contains all the control statements for the overlay structure and an INCLUDE
statement. The data set specified by the INCLUDE statement contains all the object modules for the
structure, and is a sequential data set.

Repositioning automatically called control sections
The INSERT statement can also be used to move automatically called control sections from the root
segment to the desired segment. This is helpful when control sections from the automatic call library
are used in only one segment. By moving such control sections, the root segment will contain only those
control sections used by more than one segment.

When a program is written in a higher level language, special control sections are called from the
automatic call library. Assume that the sample program is written in COBOL and that two control sections
(ILBOVTR0 and ILBOSCH0) are called automatically from SYS1.COBLIB. Ordinarily, these control sections
are placed in the root segment. However, INSERT statements are used in the following example to place
these control sections in segments other than the root segment.

Overlay Programs

206 z/OS: z/OS MVS Program Management: User's Guide and Reference

//LKED EXEC PGM=IEWBLINK,PARM='OVLY'
//MODLIB DD DSNAME=USER.OBJLIB,DISP=OLD
//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR
 .
 .
 .
//SYSLIN DD *
 ENTRY BEGIN
 INCLUDE MODLIB(CSA,CSB)
 OVERLAY ONE
 INCLUDE MODLIB(CSC)

 OVERLAY TWO
 INCLUDE MODLIB(CSD,CSE)
 INSERT ILBOVTR0
 OVERLAY TWO
 INCLUDE MODLIB(CSF)
 INSERT ILBOSCH0
 OVERLAY ONE
 INCLUDE MODLIB(CSG)

As a result, segments 3 and 4 contain ILBOVTR0 and ILBOSCH0 respectively.

This example also combines two ways of specifying the control sections for a segment.

Special options
The binder provides three special job step options (OVLY, LET, and XCAL) for the overlay program. These
options are specified on the EXEC statement for the binder job step. They must be specified each time a
program module in overlay structure is reprocessed by the binder.

OVLY option
The OVLY option must be specified for every overlay program. If the option is omitted, all the OVERLAY
and INSERT statements are considered invalid, and the output module is not an overlay structure. If, in
addition, the LET option is not specified, the output module is marked not executable.

LET option
The LET option allows marking the output module executable even though certain error conditions
were found during binder processing. When LET is specified, any exclusive reference (valid or invalid)
is accepted. At execution time, a valid exclusive reference is executed correctly; an invalid exclusive
reference usually causes unpredictable results.

Also with the LET option, unresolved external references do not prevent the module from being marked
executable. This could be helpful when part of a large program is ready for testing; the segments to
be tested might contain references to segments not yet coded. If LET is specified, the program can be
executed to test those parts that are finished (as long as the references to the absent segments are not
executed). If the LET option is not specified, these unresolved references cause the module to be marked
not executable.

XCAL option
With the XCAL option, a valid exclusive call is not considered an error, and the program module is marked
executable. However, unless the LET option is specified, other errors could cause the module to be
marked not executable. In this case, the XCAL option is not required.

AMODE and RMODE options
If the OVLY option is specified, the AMODE and RMODE options are ignored, and a diagnostic message is
issued to that effect. Overlay programs are assigned as RMODE=24 and AMODE=24.

Overlay Programs

Appendix D. Designing and specifying overlay programs 207

Special considerations
This section discusses several special considerations that affect overlay programs. These considerations
include the handling of common areas, automatic replacement of control sections, special storage
requirements, and overlay communication.

Common areas
When common areas (blank or named) are encountered in an overlay program, the common areas are
collected as described previously (that is, the largest blank or identically named common area is used).
The final location of the common area in the output module depends on whether INSERT statements
were used to structure the program.

If INSERT statements are used to structure the overlay program, a named common area should either be
part of the input stream in the segment to which it belongs or it should be placed there with an INSERT
statement.

Because INSERT statements cannot be used for blank common areas, a blank common area should
always be part of the input stream in the segment to which it belongs.

If INSERT statements are not used, and the control sections for each segment are placed or included
between OVERLAY statements, the binder "promotes" the common area automatically. The common area
is placed in the common segment of the paths that contain references to it so that the common area is in
storage when needed. The position of the promoted area in relation to other control sections within the
common segment is unpredictable.

If a common area is encountered in a module from the automatic call library, automatic promotion places
the common area in the root segment. In the case of a named common area, this can be overridden by
use of the INSERT statement.

Assume that the sample program is written in Fortran and common areas are present as shown in
Figure 60 on page 208. Further assume that the overlay program is structured with INCLUDE statements
between the OVERLAY statements so that automatic promotion occurs.

Figure 60. Common areas before processing

Segments 2 and 5 contain blank common areas. Segments 3 and 4 contain named common area A.
Segments 4 and 5 contain named common area B. During binder processing, the blank common areas
are collected and the larger area is promoted to the root segment (the first common segment in the two

Overlay Programs

208 z/OS: z/OS MVS Program Management: User's Guide and Reference

paths). The common areas named A are collected and the larger area is promoted to segment 2. The
common areas named B are collected and promoted to the root segment. Figure 61 on page 209 shows
the location of the common areas after processing by the binder.

Figure 61. Common areas after processing

Automatic replacement
When identically named control sections appear in the modules of an overlay structure, the second and
any subsequent control sections with that name are ignored. This occurs whether the modules are in
segments in the same path or in exclusive segments. Resolution of external references might therefore
cause invalid exclusive references. Invalid exclusive references cause the binder to mark the output
module not executable unless the exclusive call (XCAL) option is specified on the EXEC statement (see
“XCAL: Exclusive call option” on page 100).

Storage requirements
The virtual storage requirements for an overlay program include the items placed in the program by the
binder.

The items that the binder places in an overlay program are the segment table, entry tables, and other
control information. Their size must be included in the minimum requirements for an overlay program,
along with the storage required by the longest path and any control sections from the automatic call
library.

Every overlay program has one segment table in the root segment. The storage requirements are:

Length of SEGTAB = (4n + 24) bytes

Where n is the number of segments in the program.

Overlay Programs

Appendix D. Designing and specifying overlay programs 209

Some segments will have an entry table. The requirements of the entry tables in the segments in the
longest path must be added to the storage requirements for the program. The requirements for an entry
table are:

Length of ENTAB = 12(x + 1) bytes

Where x is the number of entries in the table.

Finally, a NOTE list is required to execute an overlay program. The storage requirements are:

Length of NOTELST = (4n + 8) bytes

Where n is the number of segments in the program.

Overlay communication
Several ways of communicating between segments of an overlay program are discussed in this section.
A higher level or assembler language program can use a CALL statement or a CALL macro instruction,
respectively, to cause control to be passed to a symbol defined in another segment. The CALL can cause
the segment to be loaded if it is not already present in storage. An assembler language program can also
use three additional ways to communicate between segments:

1. A branch instruction that causes a segment to be loaded and control to be passed to a symbol defined
in that segment.

2. A segment load (SEGLD) macro instruction, which requests loading of a segment. Processing continues
in the requesting segment while the requested segment is being loaded.

3. A segment load and wait (SEGWT) macro instruction, which requests loading of a segment. Processing
continues in the requesting segment only after the requested segment is loaded.

Any of the four methods can be used to make inclusive references. Only the CALL and branch can be used
to make exclusive references. Do not use the SEGLD or the SEGWT macro instructions to make exclusive
references. Both imply that processing is to continue in the requesting segment. An exclusive reference
leads to erroneous results when the program is executed.

CALL statement or CALL macro instruction
A CALL statement or a CALL macro instruction refers to an external name in the segment where control
is passed. The external name must be defined as an external reference in the requesting segment. In
assembler language, the name must be defined as a 4-byte V-type address constant. The high-order bit is
reserved for use by the control program and must not be altered during execution of the program.

When a CALL is used, the requested segment and any segments in its path are loaded if they are not
part of the path already in virtual storage. After the segment is loaded, control is passed to the requested
segment at the location specified by the external name.

A CALL between inclusive segments is always valid. A return can be made to the requesting segment by
another source language statement, such as RETURN. A CALL between exclusive segments is valid if the
conditions for a valid exclusive reference are met; a return from the requested segment can be made only
by another exclusive reference, because the requesting segment has been overlaid.

Branch instruction
Any of the branching conventions shown in Table 18 on page 211 can be used to request loading and
branching to a segment. As a result, the requested segment and any segments in its path are loaded if
they are not part of the path already in virtual storage. Control is then passed to the requested segment at
the location specified by the address constant placed in general register 15.

Overlay Programs

210 z/OS: z/OS MVS Program Management: User's Guide and Reference

Table 18. Branch sequences for overlay programs

Example Name“1” on page 211 Operation Operand“2” on page 211,“3” on page 211

1 L
BALR

R15,=V(name)
Rn,R15

2

⋮

ADCON

L
BALR

DC

R15,ADCON
Rn,R15

V(name)

3 L
BAL

R15,=V(name)
Rn,0(0,R15)“4” on page 211

4 L
BAL

R15,=V(name)
Rn,0(R15)“5” on page 211

5“6” on page 211 L
BCR

R15,=V(name)
15,R15

6“6” on page 211 L
BC

R15,=V(name)
15,0(0,R15)“4” on page 211

7“6” on page 211 L
BC

R15,=V(name)
15,0(R15)“5” on page 211

Notes:

1. When the name field is blank, specification of a name is optional.
2. R15 must hold a 4-byte address constant that is the address of an entry name or a control section

name in the requested segment. The address constant must be loaded into the standard entry point
register, register 15.

3. Rn is any other register and is used to hold the return address. This register is usually register 14.
4. This can also be written so that the index register is loaded with the address constant; the other

fields must be zero.
5. In this format, the base register must be loaded with the address constant; the displacement must be

zero.
6. This example is an unconditional branch; other conditions are also allowed.

The address constant must be a 4-byte V-type address constant. The high-order byte is reserved for use
by the control program and must not be altered during execution of the program. The BAS and BASR
instructions cannot be used.

A branch between inclusive segments is always valid. A return can be made using the address stored in
Rn. A branch between exclusive segments is valid if the conditions for a valid exclusive reference are met;
a return can be made only by another exclusive reference.

Segment load (SEGLD) macro instruction
The Segment Load macro instruction provides overlap between segment loading and processing within
the requesting segment. As a result of using any of the examples in Table 19 on page 212, the loading of
the requested segment and any segments in its path is initiated when they are not part of the path already

Overlay Programs

Appendix D. Designing and specifying overlay programs 211

in virtual storage. Processing then resumes at the next sequential instruction in the requesting segment
while the segment or segments are being loaded. Control can be passed to the requested segment with
either a CALL or a branch, as shown in Examples 1 and 2, respectively. A SEGWT instruction can be used
to ensure that the data in the control section specified by the external name is in virtual storage before
processing resumes, as shown in Example 3.

Table 19. Use of the SEGLD macro instruction

Example Name“1” on page 212 Operation Operand“2” on page 212,“3” on page 212

1 SEGLD
CALL

external name
external name

2 SEGLD
branch

external name
external name

3

SEGLD
SEGWT
L

external name
external name
Rn,=V(name)

Notes:

1. When the name field is blank, specification of a name is optional.
2. External name is an entry name or a control section name in the requested segment.
3. Rn is any other register and is used to hold the return address. This register is usually register 14.

The external name specified in the SEGLD macro instruction is defined with a 4-byte V-type address
constant. The high-order bit is reserved for use by the control program and must not be altered during
execution of the program.

Segment wait (SEGWT) macro instruction
The SEGWT macro is used to stop processing in the requesting segment until the requested segment is in
virtual storage.

As a result of using any of the examples in Table 20 on page 212, no further processing takes place
until the requested segment and all segments in its path are loaded when not already in virtual storage.
Processing resumes at the next sequential instruction in the requesting segment after the requested
segment has been loaded.

Table 20. Use of the SEGWT macro instruction

Example Name“1” on page 213 Operation Operand“2” on page 213, “3” on page 213

1

ADCON

SEGLD
SEGWT
L
branch
DC

external name
external name
Rn,ADCON

V(name)

2 SEGWT
L

external name
Rn,=V(name)

Overlay Programs

212 z/OS: z/OS MVS Program Management: User's Guide and Reference

Table 20. Use of the SEGWT macro instruction (continued)

Example Name“1” on page 213 Operation Operand“2” on page 213, “3” on page 213

Notes:

1. When the name field is blank, specification of a name is optional.
2. External name is an entry name or a control section name in the requested statement.
3. Rn is any other register and is used to hold the return address. This register is usually register 14.

If the SEGWT and SEGLD macro instructions are used together, overlap occurs between processing and
segment loading. Use of the SEGWT macro instruction serves as a check to see that the necessary
information is in storage when it is finally needed (see Example 1 in Table 20 on page 212). In Example
2 in Table 20 on page 212, no overlap is provided. The SEGWT macro instruction initiates loading, and
processing is stopped in the requesting segment until the requested segment is in virtual storage.

The external name specified in the SEGWT macro instruction must be defined with a 4-byte V-type
address constant. The high-order bit is reserved for use by the control program and must not be altered
during execution of the program.

If the contents of a virtual storage location in the requested segment are to be processed, the entry name
of the location must be referred to by an A-type address constant.

Overlay Programs

Appendix D. Designing and specifying overlay programs 213

Overlay Programs

214 z/OS: z/OS MVS Program Management: User's Guide and Reference

Appendix E. Accessibility

Accessible publications for this product are offered through IBM Documentation (www.ibm.com/docs/en/
zos).

If you experience difficulty with the accessibility of any z/OS information, send a detailed message to
the Contact the z/OS team web page (www.ibm.com/systems/campaignmail/z/zos/contact_z) or use the
following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted mobility or limited vision
use software products successfully. The accessibility features in z/OS can help users do the following
tasks:

• Run assistive technology such as screen readers and screen magnifier software.
• Operate specific or equivalent features by using the keyboard.
• Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user interfaces found in z/OS.
Consult the product information for the specific assistive technology product that is used to access z/OS
interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following information describes how to use
TSO/E and ISPF, including the use of keyboard shortcuts and function keys (PF keys). Each guide includes
the default settings for the PF keys.

• z/OS TSO/E Primer
• z/OS TSO/E User's Guide
• z/OS ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM Documentation with a
screen reader. In dotted decimal format, each syntax element is written on a separate line. If two or more
syntax elements are always present together (or always absent together), they can appear on the same
line because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To hear these numbers
correctly, make sure that the screen reader is set to read out punctuation. All the syntax elements that
have the same dotted decimal number (for example, all the syntax elements that have the number 3.1)

© Copyright IBM Corp. 1991, 2021 215

https://www.ibm.com/docs/en/zos
https://www.ibm.com/docs/en/zos
http://www.ibm.com/systems/campaignmail/z/zos/contact_z

are mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax
can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a syntax element with
dotted decimal number 3 is followed by a series of syntax elements with dotted decimal number 3.1, all
the syntax elements numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add information about the
syntax elements. Occasionally, these words and symbols might occur at the beginning of the element
itself. For ease of identification, if the word or symbol is a part of the syntax element, it is preceded by
the backslash (\) character. The * symbol is placed next to a dotted decimal number to indicate that the
syntax element repeats. For example, syntax element *FILE with dotted decimal number 3 is given the
format 3 * FILE. Format 3* FILE indicates that syntax element FILE repeats. Format 3* * FILE
indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax elements, are shown in the
syntax just before the items they separate. These characters can appear on the same line as each item,
or on a separate line with the same dotted decimal number as the relevant items. The line can also show
another symbol to provide information about the syntax elements. For example, the lines 5.1*, 5.1
LASTRUN, and 5.1 DELETE mean that if you use more than one of the LASTRUN and DELETE syntax
elements, the elements must be separated by a comma. If no separator is given, assume that you use a
blank to separate each syntax element.

If a syntax element is preceded by the % symbol, it indicates a reference that is defined elsewhere. The
string that follows the % symbol is the name of a syntax fragment rather than a literal. For example, the
line 2.1 %OP1 means that you must refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.
? indicates an optional syntax element

The question mark (?) symbol indicates an optional syntax element. A dotted decimal number
followed by the question mark symbol (?) indicates that all the syntax elements with a corresponding
dotted decimal number, and any subordinate syntax elements, are optional. If there is only one
syntax element with a dotted decimal number, the ? symbol is displayed on the same line as the
syntax element, (for example 5? NOTIFY). If there is more than one syntax element with a dotted
decimal number, the ? symbol is displayed on a line by itself, followed by the syntax elements that
are optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the
syntax elements NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted decimal number
followed by the ! symbol and a syntax element indicate that the syntax element is the default option
for all syntax elements that share the same dotted decimal number. Only one of the syntax elements
that share the dotted decimal number can specify the ! symbol. For example, if you hear the lines
2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option for
the FILE keyword. In the example, if you include the FILE keyword, but do not specify an option,
the default option KEEP is applied. A default option also applies to the next higher dotted decimal
number. In this example, if the FILE keyword is omitted, the default FILE(KEEP) is used. However,
if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE), the default option
KEEP applies only to the next higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be repeated zero or more times.
A dotted decimal number followed by the * symbol indicates that this syntax element can be used
zero or more times; that is, it is optional and can be repeated. For example, if you hear the line 5.1*
data area, you know that you can include one data area, more than one data area, or no data area.
If you hear the lines 3* , 3 HOST, 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Notes:

216 z/OS: z/OS MVS Program Management: User's Guide and Reference

1. If a dotted decimal number has an asterisk (*) next to it and there is only one item with that dotted
decimal number, you can repeat that same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items have that dotted decimal
number, you can use more than one item from the list, but you cannot use the items more than
once each. In the previous example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least once. A dotted decimal
number followed by the + symbol indicates that the syntax element must be included one or more
times. That is, it must be included at least once and can be repeated. For example, if you hear the
line 6.1+ data area, you must include at least one data area. If you hear the lines 2+, 2 HOST,
and 2 STATE, you know that you must include HOST, STATE, or both. Similar to the * symbol, the
+ symbol can repeat a particular item if it is the only item with that dotted decimal number. The +
symbol, like the * symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix E. Accessibility 217

218 z/OS: z/OS MVS Program Management: User's Guide and Reference

Notices

This information was developed for products and services that are offered in the USA or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

This information could include missing, incorrect, or broken hyperlinks. Hyperlinks are maintained in
only the HTML plug-in output for IBM Documentation. Use of hyperlinks in other output formats of this
information is at your own risk.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Site Counsel
2455 South Road

© Copyright IBM Corp. 1991, 2021 219

Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or

220 z/OS: z/OS MVS Program Management: User's Guide and Reference

reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies that collect
each user’s name, email address, phone number, or other personally identifiable information for purposes
of enhanced user usability and single sign-on configuration. These cookies can be disabled, but disabling
them will also eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at ibm.com®/privacy and IBM’s Online Privacy Statement at ibm.com/privacy/details
in the section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM Software Products
and Software-as-a-Service Privacy Statement” at ibm.com/software/info/product-privacy.

Policy for unsupported hardware
Various z/OS elements, such as DFSMSdfp, JES2, JES3, and MVS, contain code that supports specific
hardware servers or devices. In some cases, this device-related element support remains in the product
even after the hardware devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported hardware devices. Software
problems related to these devices will not be accepted for service, and current service activity will cease
if a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be
issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently
change when service for particular servers or devices is withdrawn. Likewise, the levels of other software
products supported on a particular release of z/OS are subject to the service support lifecycle of those

Notices 221

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and
product documentation) can include references to hardware and software that is no longer supported.

• For information about software support lifecycle, see: IBM Lifecycle Support for z/OS (www.ibm.com/
software/support/systemsz/lifecycle)

• For information about currently-supported IBM hardware, contact your IBM representative.

Programming interface information
This book primarily documents information that is NOT intended to be used as Programming Interfaces of
z/OS.

This book also documents intended Programming Interfaces that allow the customer to write programs
to obtain the services of z/OS. This information is identified where it occurs, either by an introductory
statement to a topic or section or by the following marking:

Programming Interface Information

End Programming Interface Information

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and Trademark information (www.ibm.com/legal/copytrade.shtml).

222 z/OS: z/OS MVS Program Management: User's Guide and Reference

http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/legal/copytrade.shtml

Glossary

This glossary defines technical terms and abbreviations used in program management documentation. If
you do not find the term you are looking for, refer to the index of the appropriate z/OS manual.

This glossary includes terms and definitions from:

• The American National Standard Dictionary for Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute (ANSI). Copies can be purchased from the American
National Standards Institute, 1430 Broadway, New York, New York 10018.

• The Information Technology Vocabulary, developed by Subcommittee 1, Joint Technical Committee 1,
of the International Organization for Standardization and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1).

adata
Associated data. A collective term referring to the set of nontext, nonbinder-defined data classes
stored in the program object. ADATA is used by the language and binder products to save intermediate
data that can be of later use by utilities, debugging routines, etc. ADATA is not required for execution
or rebinding.

A-con
A-type constant, an address

adcon
Address constant; a collective term for a field containing an address, a length, or an offset.

alias
An alternate name for a member of a partitioned data set or PDSE.

alternate entry point
A load module or program object alias for which the entry point is not the primary entry point. Other
program attributes can differ within a defined alias from those of the primary entry point.

AMODE (addressing mode)
The attribute of a program module that identifies whether the program entry point can receive control
in 24-bit addressing mode, 31-bit addressing mode, or either.

attributes
See program module attributes.

automatic library call
The process by which the binder resolves external reference by including additional members from
the automatic call library.

bind
To combine one or more control sections or program modules into a single program module, resolving
references between them, or to assign virtual storage addresses to external symbols.

binder application programming interface
The set of binder entry points that allow a calling program to request specific binding and editing
services individually.

binder batch interface
The set of binder entry points that allow it to perform binding and loading services.

binder dialog
A sequence of calls to the binder application programming interface to accomplish a specific task.

binder processing intent
The intended use of a binder workmod, specified at the time the workmod is created. The ACCESS
processing intent indicates that the workmod will be used to copy or access program module data
and that no binding will be requested. The BIND processing intent indicates that the workmod will be
used to collect and edit program module data, and then bound and either saved or loaded into virtual
storage for execution.

© Copyright IBM Corp. 1991, 2021 223

class
A cross section of program module data that is consistent in format and class.

Coded Character Set Identifier (CCSID)
A 16-bit number that identifies a specific encoding scheme identifier, character set identifiers, code
page identifiers, and additional coding required information. The CCSID uniquely identifies the coded
graphic character representation used.

common area
A control section used to reserve a virtual storage area that can be referred to by other modules.

common section
Another term for common area.

CSECT (control section)
The part of a program specified by the programmer to be an indivisible relocatable unit.

DFSMSdfp
A DFSMS base element of z/OS, that provides functions for storage management, data management,
program management, device management, and distributed data access.

DFSMS
An IBM z/OS licensed program that provides storage, data, and device management functions. DFSMS
consists of DFSMSdfp, DFSMSdss, DFSMShsm, and DFSMSrmm.

dialog
See binder dialog.

dialog token
A doubleword token used as an identifier for a specific binder dialog.

directory entry
A logical record in a program library directory that contains a member or alias name, a pointer to that
member, and attributes of that member.

dynamic link library
A file containing executable code and data bound to a program at load time or run time. The code and
data in a dynamic link library can be shared by several applications simultaneously.

element
See workmod element.

entry point
The address or label of the first instruction executed on entering a computer program. A computer
program can have a number of different entry points. The primary entry point is also called the main
entry point.

exclusive reference
A call from a section in one overlay path to one in a different path. Because an exclusive call causes
the calling section to be overlaid, return to the calling section is not possible.

exclusive segments
Segments in the same region of an overlay program that are not in the same path. Exclusive segments
cannot be in virtual storage simultaneously.

external name
A name that can be referred to by any control section or separately assembled or compiled module;
that is, a name that is defined in another module.

external reference
A reference to a symbol defined as an external name in another program or module.

external symbol
A control section name, entry point, common area name, part name, pseudoregister, or external
reference that is defined or referred to in a particular module.

IEWFETCH
See program fetch.

224 z/OS: z/OS MVS Program Management: User's Guide and Reference

inclusive reference
A call from a segment in storage to an external symbol in a segment in the same path. An inclusive call
does not cause overlay of the calling segment.

inclusive segments
Segments in the same region of an overlay program that are in the same path. Inclusive segments can
be in virtual storage simultaneously.

intent
See binder processing intent.

J-con
An adcon containing a length.

load module
An executable program stored in a partitioned data set program library. A load module cannot be
stored in a PDSE or z/OS UNIX file. See also program object.

loader token
An 8-byte token passed to the Program Loader to request loading of a specified deferred-load class,
such as C_WSA..

mangled name
An external name, such as a function or variable name, which has been encoded during compilation to
include type and scope information.

merge class
A text class containing only named Parts. Only the first instance of a Part is retained, but all other
instances with the same name are checked to verify that they have the same length and alignment.

module map
A listing of a program module showing the length and module offset of each section.

name space
The set of all possible names composed of characters from the binder's character set, within which no
duplicates are allowed. All external symbols have an assigned name space during binder processing
and within program objects. The following name space values are defined:

1. normal external names
2. pseudo register names
3. parts (usually external data items such as data items in C writable static).

object module
A collection of one or more compilation units produced by an assembler, compiler, or other language
translator and used as input to the binder or linkage editor.

overlay entry table
A special section created by the binder or linkage editor at the end of an overlay segment that allows
branching into an overlay segment in a different path.

overlay path
All of the segments in an overlay structure between a given segment and the root segment.

overlay program
A program module format for which some control sections occupy the same virtual storage addresses
as others. The sections are organized into overlay segments, which are brought into storage as needed
during execution and then overlaid by other segments when no longer needed.

overlay region
In an overlay structure, a contiguous area of virtual storage where segments can be loaded
independently of paths in other regions. Only one path within a regions can be in virtual storage
at any given time.

overlay segment
The smallest unit of an overlay program that can be separately loaded by the overlay supervisor. An
overlay segment consists of one or more sections and is always loaded at the same offset relative to
the start of the program module.

Glossary 225

overlay segment table
A table located at the beginning of the root segment of an overlay program that describes the
segments of the program.

page-map
A technique for loading program objects into virtual storage. The pages of a program object are
brought into central storage when a page fault occurs.

part
A named subdivision of an merge class, used to describe a pseudoregister or external data item. Parts
can be shared by all sections in the bound program object.

partitioned data set (PDS)
A data set on direct access storage that contains a directory followed by contiguous partitions, called
members. Each partition can contain an executable load module or a sequential data file. A PDS
cannot contain a program object (see “load module” on page 225 and “program object” on page 226).

partitioned data set extended (PDSE)
A system-managed data set that is functionally similar to a PDS but contains an index over scattered
members, so is self-reorganizing. A PDSE can contain either executable program objects or sequential
data files, but cannot contain a mixture of the two types. A PDSE cannot contain a load module (see
“load module” on page 225 and “program object” on page 226).

permanent data set
A user-named data set that is normally retained for longer than the duration of a job or interactive
session. Contrast with temporary data set.

primary name
The name contained in the primary directory entry for a library member, used for creating, copying,
and deleting the member. A library member always has one primary name and zero or more aliases.

processing intent
See binder processing intent.

program fetch (IEWFETCH)
A program that prepares programs for execution by loading them at specific storage locations and
readjusting each relocatable address constant.

program library
A partitioned data set or PDSE that always contains named members.

program management
The task of preparing programs for execution, storing the programs, load modules, or program objects
in program libraries, and executing them on the operating system.

program management binder
See binder.

program module
The output of the binder. A collective term for program object and load module.

program module attributes
The characteristics of a program module that are stored in the program module directory entry, and
are used to control the loading, rebinding, and other processing of the module.

program object
All or part of a computer program in a form suitable for loading into virtual storage for execution.
Program objects are stored in PDSE program libraries or z/OS UNIX files and have a number of
functional enhancements over traditional load modules. Program objects are produced by the binder.

pseudoregister
An external dummy section used to provide global addressability to dynamically allocated control
blocks, data areas, and other resources.

Q-con
Q-type address constant; an offset.

226 z/OS: z/OS MVS Program Management: User's Guide and Reference

reenterable
The reusability attribute that allows a program to be used concurrently by more than one task. A
reenterable module can modify its own data or other shared resources, if appropriate serialization is
in place to prevent interference between using tasks. See reusability.

refreshable
The reusability attribute that allows a program to be replaced (refreshed) with a new copy without
affecting its operation. A refreshable module cannot be modified by itself or any other module during
execution. See reusability.

reusability
The attribute of a module or section that indicates the extent to which it can be reused or shared by
multiple tasks within the address space. See refreshable, reenterable, and serially reusable.

RMODE (residence mode)
The attribute of a program module that identifies where in virtual storage the module is to reside
(above or below 16 MB).

root segment
The first segment of an overlay program. This segment remains in virtual storage at all times during
the execution of the program

section
A generic name given to the smallest unit of a program which can be individually manipulated during
building. Sections are named by the programmer, and can be moved, replaced, or deleted during
link-editing or binding.

segment
See overlay segment. Class segment is a continuous unit of text in a multiple part program object,
consisting of one or more text classes, which can be separately loaded by the program loader under
control of assigned loader attributes.

serially reusable
The reusability attribute that allows a program to be executed by more than one task in sequence.
A serially reusable module cannot be entered by a new task until the previous task has exited. See
reusability.

Storage Management Subsystem (SMS)
A DFSMS facility used to automate and centralize the management of storage. Using SMS, a storage
administrator describes data allocation characteristics, performance and availability goals, backup
and retention requirements, and storage requirements to the system through data class, storage
class, management class, storage group, and ACS routine definitions.

system data
The data sets required by MVS or its subsystems for initialization and control.

system status index (SSI)
A field in the directory entry of a program module which can be used to record current maintenance
status.

temporary data set
An uncataloged data set whose name begins with & or &&, that is normally used only for the duration
of a job or interactive session. Contrast with permanent data set.

text
The classes of module data representing the instructions and data of the program. Locations in text
classes may be the target of adcons; locations in non-text classes may not.

transportable program
A program object that has been converted into a nonexecutable form for transfer to other systems.

true alias
A program alias for which the entry point is the same as the primary entry point.

UFS
See UNIX file system.

Glossary 227

UNIX file system
A section of the UNIX file tree that is physically contained on a single device or disk partition and that
can be separately mounted, dismounted, and administered. Also see hierarchical file system.

V-con
V-type constant, containing an address.

workmod
A logical data structure in binder working storage used to assemble or otherwise operate on a
program module.

workmod element
A subdivision of workmod data that is identified by a section and class name. The element is the
normal unit of data transfer in binder GET and PUT data calls. See CSECT.

workmod token
A doubleword token used to identify a specific workmod in binder storage.

228 z/OS: z/OS MVS Program Management: User's Guide and Reference

Index

Special Characters
**GO 89
$PRIVATE 133, 171

A
A-con

definition 223
abbreviation/demangled name report 144
AC option

purpose 76
syntax 76

access intent
definition 223

accessibility
contact IBM 215
features 215

adata 223
adcon

relocating 27
setting high order bit 85
using 16

adcon (address constant)
definition 223

alias
definition 223
deleting 6
description 103
linkage editor maximum 161
specifying 103

ALIAS statement
example 105
linkage editor differences 161
purpose 103
syntax 103

ALIASES option
coding 76
purpose 76
syntax 76

ALIGN2 option
purpose 76
syntax 76

aligning sections
2KB boundary 76
4KB boundary

with ORDER statement 66, 122
with PAGE statement 125

alignment
description 105
specifying 105

ALIGNT statement
example 106
purpose 105
syntax 105

alternate entry point
definition 223

alternate entry point (continued)
specifying 103
specifying AMODE 120

AMASPZAP
operations on program modules 6

AMBLIST
additional information 154
example 153
JCL 153
listing program and object modules 6
using for diagnosis 153

AMODE (addressing mode)
default value 30
definition 223
description 29
for overlay programs 31, 207
hierarchy 30
linkage editor differences 157
purpose 77
specifying 77, 120
syntax 77
valid with RMODE 31
validation 31
values 29

APF 76
archive libraries 54
assigning authorization codes 128
assigning load module block size

by binder 40
with DC option 81
with DCBS option 81
with MAXBLK option 88

assigning SSI data 130
assistive technologies 215
ATTACH macro

invoking from batch loader 159
linkage editor 158

authorization code
assigning 76

authorized program facility
code, assigning 76

autocall 54, 55
AUTOCALL

description 106
requesting 106

AUTOCALL statement
example 107
purpose 106
syntax 106

autocall, incremental 54
automatic library call

defining SYSLIB 38, 56
definition 223
resolving external references 53
suppressing 57, 77
using LIBRARY statement 56, 117
using NCAL option 77

Index 229

B
batch loader

data set requirements 158
ddname list 160
description 5
differences from binder 157
incompatible options 164
interpreting output 172
invoking

from a program 159
in batch 158
under TSO 160

names 158
storage requirements 166
supported binder options 162
virtual storage requirements 166

bind
definition 223

bind intent
definition 223

binder
diagnosis 147
serviceability 147

binder (program management binder)
description 3
input and output

sources 19, 46
invoking

from a program 44
in batch 35
under TSO 44

JCL example 35
loading programs 29
program modules 3
program names 36
specifying options 69
specifying virtual storage size 36

binder application programming interface
definition 223

binder batch interface
definition 223
invoking 35

binder dialog
definition 223

binder fill character
specifying 85

binder options
AC option 76
ALIASES 76
ALIGN2 76
AMODE 77
CALL 77
CASE 77
COMPAT 78
compatibility level 78
COMPRESS 80
DC 81
DCBS 81
DYNAM 81
EDIT 82
environmental 71
EP 83
EXITS 83

binder options (continued)
EXTATTR 83
FETCHOPT 84
FILL 85
GID 85
HOBSET 85
including from a data set 89
INFO 85
LET 86
LINECT 86
LIST 86
LISTPRIV 87
LONGPARM 87
MAP 87
MAXBLK 88
MODMAP 88
MSGLEVEL 88
NAME 89
negative 71
OL 89
OPTIONS 89
OVLY 89
PARM 71
PATHMODE 90
primary 71
PRINT 91
RES 91
REUS 91
RMODE 92, 93
SCTR 94
SIGN 94
SIZE 94
specifying 71
SSI 95
STORENX 95
STRIPCL 96
STRIPSEC 96
summary 72
SYMTRACE 97
syntax conventions 69
TERM 97
TEST 98
TRAP 98
UID 99
UPCASE 99
WKSPACE 99
XCAL 100
XREF 100

binder output
building a map of module contents 88
controlling content 86, 87
controlling message display 88
interpreting 131
requesting cross-reference table 100
requesting module map 87
sending messages to SYSTERM 97
specifying lines per page 86
suppressing SYSLOUT 91

binder processing intent
definition 223

Binder service level report 145
boundary

specifying alignment 105
branch instruction

230 z/OS: z/OS MVS Program Management: User's Guide and Reference

branch instruction (continued)
in overlay programs 210

C
C370lib data sets 54
c89

diagnosis 154
guidelines for diagnosis 154

call library
for linkage editor and batch loader 158

CALL macro
in overlay programs 210

CALL option
purpose 77
syntax 77

CALL statement
in overlay programs 210

CASE option
purpose 77
syntax 77

cataloged procedure 42
CESD (composite external symbol dictionary)

description 20
CHANGE statement

example 60, 108
linkage editor differences 161
purpose 60
syntax 107

changing external symbols 60, 107
checkpoint support 9
class

definition 224
classes

parts, of text classes 14
coded character set identifier

definition 224
coding JCL 35
combing modules 11
comment rules 102
common area

aligning
example 66
with ORDER statement 66, 122
with PAGE statement 125

blank or named 17
changing 107
definition 224
deleting 64
description 17
encoding the name 28
in overlay programs 208
inserting 116
ordering 65, 122
replacing 63

common section
definition 224

communicating between overlay segments 210
COMPAT option

default 78
purpose 78
syntax 78

compatibility
downward 81

compatibility level 78
COMPRESS option

purpose 80
compression 80
concatenated data set 158
contact

z/OS 215
continuing a statement

binder 101
linkage editor 161

control section
editing 161
replacing 161

control statement
continuing

binder 101
linkage editor 161

Language Environment 32
placement 60, 103
precedence 103
primary input 47
purpose 101
reference 101
separate data set 48
syntax conventions 101

controlling message display 88
converting program modules 5
COPYGRP

and long names 6
copying program modules 5
creating executable programs

diagram 2, 12
creating overlay programs 89, 116, 123, 191
cross-reference report

ddname versus pathname 145
cross-reference table

example
binder 139
linkage editor 171

interpreting 138
renamed symbol 137
requesting 100

CSECT (control section)
aligning

with ORDER statement 122
with PAGE statement 125

automatic replacement
in overlay programs 209

changing 107
definition 224
deleting 127
dependency 192
encoding 28
encoding name 28
inserting 116
ordering 122
overview 13
positioning in overlay programs 204
replacing

with REPLACE statement 127
CSECT (section)

aligning
example 66
with ORDER statement 66

Index 231

CSECT (section) (continued)
automatic replacement 61
deleting

example 65
editing 59
ordering

example 66
replacing

description 61
example 62, 64
with REPLACE statement 63

D
data set

additional includes 41
automatic library call 38
call library 56
cataloged procedure 42
concatenated

binder 52
linkage editor and batch loader 158

diagnosis 147
diagnosis output 147
diagnostic 167
diagnostic output 38
included for linkage editor and batch loader 158
primary input

defining 45
primary output 39
required 37
side file output 41
terminal diagnostic output 40

DBCS (double byte character set)
shift-in and shift-out codes 29

DC option
purpose 81
syntax 81

DCBS option
purpose 40, 81
syntax 81

DD statement
allocating under TSO 44
cataloged procedure 42
coding for batch 35
description 37
required 37

ddname list
for batch loader 160
for linkage editor 159

ddname vs. pathname report 145
deleting external symbols

description 64
differences with linkage editor 161
with REPLACE statement 127

deleting program modules and aliases 6
deleting sections 127
DFSMS/MVS

definition 224
DFSMSdfp

definition 224
diagnosis

binder 147
c89 command 154

diagnosis (continued)
capturing error messages 154
ecode 150
IEWDUMP data set 154
IEWTRACE 149
IEWTRACE data set 154
invocation parameters 154
ld 154
ld command 154
output listing 154
UNIX shell 154

diagnosis aid
AMBLIST 153
data set contents 147
dump generation 151
IDCAMS 154
IEWDUMP 151
IEWDUMP data set 152
IEWGOFF 153
workmod 151

diagnostic
linkage editor 167
output 167

diagnostic aids
AMASPZAP 6
AMBLIST 6
binder messages 91
error messages 168
loader serviceability 174
sample output 169

dialog token
definition 224

directory entry
contents 19
definition 224

DLL
binder support for 33

downward compatibility 81
dump data

generation 151
interpreting 151
locating 152

dumping program modules 6
DYNAM option

purpose 81
syntax 81

dynamic link library
binder support for 33
definition 224

E
ecode

diagnosis 150
example 150
interpreting 150
request 155

EDIT option
purpose 82
syntax 82

element
definition 224

element definition 18
entry name

232 z/OS: z/OS MVS Program Management: User's Guide and Reference

entry name (continued)
changing 107
deleting duplicate 62
encoding 28
specifying 109

entry point
definition 224
deleting 64, 127
precedence 110
replacing 127
specifying 59, 83, 109
specifying AMODE

with AMODE option 77
with MODE statement 120

ENTRY statement
example 110
linkage editor differences 161
purpose 109
syntax 109

EP option
purpose 83
syntax 83

ESD (external symbol dictionary)
description 17
program modules 20

exclusive call
authorizing 100, 207

exclusive reference
definition 224
description 197

exclusive segment
definition 224
description 196

EXEC statement
coding in batch 36
PARM field 36
PGM parameter 36
REGION parameter 36
specifying with JCL 36

executing overlay programs 198
EXITS, binder option

purpose 83
specifying 83
syntax 83

EXPAND statement
example 111
linkage editor differences 161
purpose 110
syntax 110

expanding sections
with not-editable attribute 82

EXTATTR binder option
purpose 83
specifying 83
syntax 83

external label
description 17

external name
definition 224
encoding 28
using 16

external reference
changing 107
definition 224

external reference (continued)
deleting 64, 127
description 17
replacing 127
resolving 16, 28, 53
suppressing resolution 57

external symbol
changing

example 60
creating hidden aliases 76
definition 224
deleting 64, 127, 161
description 16
duplicate 60
importing 112
renaming 126
replacing 127
warning on delete 61

F
feedback xxi
FETCHOPT option

default 84
description 5
purpose 84
syntax 84

FILL option
default 85
purpose 85
syntax 85

G
GID 85
GOFF (generalized object file format)

binder support 11
data set 153
diagnosis help 152
IEWGOFF 152
record formats 153

H
hidden alias

definition 76
displaying 76

high order bit 85
HOBSET option

default 85
purpose 85
syntax 85

I
IDCAMS

JCL example 154
printing utility 154
z/OS UNIX file
154

IDENTIFY statement
example 112
linkage editor differences 161

Index 233

IDENTIFY statement (continued)
purpose 111
syntax 111

IDR (identification record)
DBCS encoding 112
listing 112
replacing 61
size limitation 111
specifying 111
types of records 19

IEBCOPY
alter RLD 6
operations on program modules 5

IEHLIST 6
IEHPROGM 6
IEWDIAG

for diagnosis 148
IEWDUMP

allocation 152
contents 151
diagnosis 151
example 152
explanation 151

IEWGOFF
allocation 153
data set 153
diagnosis 153
interpreting 153

IEWPARMS DD statement
coding in batch 38
description 38

IEWTRACE
allocation 150
for diagnosis 148
interpreting 149
sample 149

immediate mode 8
IMPORT statement

example 113
syntax 112

imported and exported symbol table
interpreting 139
suppressing 86

importing symbols 112
INCLUDE statement

coding DD statement 41
creating overlay programs 205
example 115, 116
linkage editor differences 158
processing nested 48
purpose 48
syntax 114

including input 48
including modules 114
inclusive reference

definition 225
description 197

inclusive segment
definition 225
description 196

incremental autocall
specifying 106

INFO option
purpose 85

INFO option (continued)
syntax 85

input event log
description 131
example 132

INSERT statement
creating overlay programs 206
example 117
purpose 116
syntax 116

inserting sections 116
inspecting program modules 6
interpreting output

batch loader 172
binder 131
linkage editor 167

invoking binder cataloged procedure
LKED procedure 42
LKEDG procedure 43

invoking the batch loader
from a program 159
in batch 158
under TSO 160

invoking the binder
from a program 44
in batch 35
under TSO 44

invoking the linkage editor
from a program 158
in batch 158
under TSO 160

J
J-con

definition 225
JCL (job control language)

AMBLIST example 153
coding

binder 35
example 35
EXEC statement 36
IDCAMS example 154
PARM field 36
passing modules 46

K
keyboard

navigation 215
PF keys 215
shortcut keys 215

L
ld

for diagnosis 154
guidelines for diagnosis 154

LET option
creating overlay programs 207
purpose 86
syntax 86

LIBRARY statement

234 z/OS: z/OS MVS Program Management: User's Guide and Reference

LIBRARY statement (continued)
coding DD statement 41
example 57
examples 119
purpose 56
syntax 117

LINECT option
default 86
purpose 86
syntax 86

LINK command 44
LINK macro

invoking from batch loader 159
linkage editor 158

link pack area
listing 6
search 91
searching 53
suppressing search 91

linkage editor
data set requirements 158
ddname list 159
description 5
diagnostic aids 157
differences from binder 157
incompatible options 164
interpreting output 167
invoking

in batch 158
under TSO 160

invoking from a program 158
names 158
supported binder options 162
virtual storage requirements 164

LIST option
default 87
purpose 86
syntax 86

listing IDR data 112
listing program and object modules 6
listing program library directories 6
LISTPRIV option

default 87
INFORM 87
purpose 87
syntax 87

LLA (Library Lookaside) 9
LOAD macro

invoking from batch loader 159
linkage editor 158

load module
assigning block size 40, 81, 88
definition 225
description 11
disposition messages 168
downward compatibility 81
error messages 168
size limitation 110
structure 16

loader
diagnostic aids 157
serviceability aids 174

loader (program management loader)
description 4

loader (program management loader) (continued)
relationship with program fetch 4

loader token
definition 225

LOADGO command 44
loading programs

diagram 2
syntax of PARM field 36
with the batch loader 157
with the binder 36

long-symbol abbreviation table
description 143

LONGPARM option
default 87
purpose 87
syntax 87

M
mangled name

definition 225
MAP option

linkage editor differences 163
purpose 87
syntax 87

marking program modules executable 86
matching for C370LIB and archive libraries 55
MAXBLK option

purpose 88
syntax 88

merge class
definition 225

message summary report 145
messages

batch loader 172
linkage editor 167
load module 168

migration
linkage editor to binder 177

mixed case 77
MODE statement

example 121
purpose 120
syntax 120

MODMAP option
purpose 88
syntax 88

module
description 11
editing 59
passing from prior job 46
passing from prior job step 46

module map
definition 225
example

batch loader 172
linkage editor 170

interpreting 132
requesting 87

move mode 9
MSGLEVEL option

default 88
purpose 88
syntax 88

Index 235

N
NAME option

default 89
purpose 89
syntax 89

name space
definition 225

NAME statement
example 122
linkage editor differences 162
purpose 121
syntax 121

name, long restriction 6
naming program modules 89, 121
navigation

keyboard 215
NCAL option

definition 58
syntax 77

never-call option
definition 57
specifying 77, 117
with LIBRARY statement 57

not-editable attribute 82

O
object module

as primary input 46
definition 225
description 11
including 114
structure 16

OL option
purpose 89
syntax 89

only-loadable attribute 89
operation summary

description 140
example 141

OPT (set options)
control statement, binder 129
description 129

options data set
coding in batch 38
description 38

OPTIONS option
purpose 89
syntax 89

options supported by linkage editor 162
options, setting, SETOPT 129
ORDER statement

example 66, 123
linkage editor differences 162
purpose 65, 66
syntax 122

ordering sections
example 65
with linkage editor 162
with ORDER statement 122

output data set
contents 147
diagnosis 147

output data set (continued)
diagnostic 167

output header
description 131
listing 167

overlay entry table
contents 199
definition 225

overlay path
definition 225
description 191

overlay program
AMODE and RMODE attributes 207
communicating between segments 210
creating 123, 202
definition 225
designing 191
executing 198
INSERT statement 116
inserting sections 116
length 194
multiple region 200
OVERLAY statement 123
OVLY option 89
single region 192
special considerations 208
virtual storage requirements 209

overlay region
assigning an origin 123, 204
definition 225
description 191

overlay segment
assigning an origin 123, 195
definition 225
dependency 194
description 191
determining 192

overlay segment table
definition 199, 226

OVERLAY statement
creating overlay programs 202
example 124
purpose 123
syntax 123

OVLY option
purpose 89
syntax 89

P
page alignment

2KB boundary 76
4KB boundary

with ORDER statement 66, 122
with PAGE statement 125

page mode loading 8
PAGE statement

example 66, 125
purpose 66
syntax 125

page-map
definition 226
specifying options 84

PARM field

236 z/OS: z/OS MVS Program Management: User's Guide and Reference

PARM field (continued)
cataloged procedure 42
precedence 103
specifying binder options 69
syntax conventions 69
syntax for loading 36

part
definition 226

part reference
description 17
sharing between sections 17

partitioned data set (PDS)
definition 226

partitioned data set extended (PDSE)
definition 226

parts, of text classes 14
PATHMODE option

purpose 90
syntax 90

PDS (partitioned data set)
containing primary input 46

PDSE (partitioned data set extended)
containing primary input 46

performing incremental autocall 106
permanent data set

definition 226
primary input

contents 46
primary name

definition 226
PRINT option

purpose 91
syntax 91

private code
description 17

private section list example 132
program fetch

definition 226
relationship with program management loader 4

program library
as automatic call library 56
as primary input 46
as primary output 35
definition 226

program management
components 1
definition 226
diagnostic aids 157
services 1

program module
addresses 27
AMODE and RMODE attributes 29
as primary input 46
as primary output 35
assigning addresses 27
assigning authorization code 76, 128
assigning SSI data 130
attributes 19
contents 20
definition 226
description 11
dumping 6
example 132, 134
including 114

program module (continued)
inspecting 6
map 132
marking executable 86
setting options, SETOPT 129
specifying a name 89, 121
specifying RMODE 92, 120
specifying RMODEX 93
updating SSI data 6

program module attribute
definition 226
not-editable 82
not-executable 86, 95, 164
only-loadable 89
reusability

specifying for linkage editor 163
where stored 19, 29

program object
access 8
creating in z/OS UNIX file
22
DASD storage 7
definition 226
description 3, 11, 78
restrictions 8
size limitation 110
structure 16
structure overview 7

pseudoregister
changing 107
definition 226
deleting 64, 127
description 17
encoding the name 28
replacing 127

R
reenterable attribute

definition 227
description 91
specifying 91

refreshable attribute
definition 227
description 92
specifying 92

relocation
definition 27

removed classes and sections report 137
RENAME statement

example 127
renamed-symbol cross reference table 137
renaming 58
renaming external symbols

syntax 126
renaming program modules and aliases 6
renaming symbols 126
REPLACE statement

example 64, 65, 128
linkage editor differences 161, 162
purpose 63, 64
syntax 127

replacing external symbols 127
replacing IDR data 61

Index 237

replacing sections
description 61, 63
linkage editor differences 161
with REPLACE statement 127

reprocessing 82
RES option

purpose 91
syntax 91

resolving external references
description 28, 53, 58
with LIBRARY statement 117

restart support 9
restricted no-call option

definition 57
specifying 117
with LIBRARY statement 57

restriction
executing program objects in z/OS UNIX file
23

return codes
batch loader 173
binder 189
IEWBLDGO 189
IEWBLINK 189
linkage editor 172

REUS option
linkage editor differences 163
purpose 91
syntax 91

reusability attribute
definition 227
description 91
specifying 91

RLD (relocation dictionary)
description 18

RMODE
specifying 92

RMODE (residence mode)
default value 30
definition 227
description 29
for overlay programs 31, 207
hierarchy 30
linkage editor differences 157
specifying 120
valid with RMODE 31
validation 31
values 30

RMODE option
purpose 92
syntax 92

RMODEX
specifying 93

RMODEX option
purpose 93
syntax 93

root segment
definition 227
description 191

S
scatter load option 94
SCTR option

SCTR option (continued)
purpose 94
syntax 94

secondary input
INCLUDE type 48

section
definition 17, 227

section/class/element
structure

diagram 14
SEGLD macro

in overlay programs 211
SEGWT macro

in overlay programs 212
sending to IBM

reader comments xxi
serially reusable attribute

definition 227
description 91
specifying 91

service aids 6
SETCODE statement

example 129
precedence 129
purpose 128
syntax 128

SETOPT statement
purpose 129
syntax 129

SETSSI statement
precedence 130
purpose 130
syntax 130

setting
high order bit 85

short mangled name report 144
shortcut keys 215
SIGN option

purpose 94
syntax 94

simple module
example 133

SIZE option
batch loader 166
purpose 94
syntax 94
values for linkage editor 163

source module
creating programs 157
description 11

specifying
binder fill character 85
binder group id 85
binder high order bit setting 85
binder level 78
binder load options 84
binder message display 88
binder options in a data set 89
binder output 86, 88
binder output content 87
binder page-map options 84
EXTATTR 83
information type 86
lines per page 86

238 z/OS: z/OS MVS Program Management: User's Guide and Reference

specifying (continued)
map of module contents 88
output content 86
private code 87
reusability attributes 91
RMODE 92
RMODEX 93
virtual storage size with SIZE 94

specifying aliases and alternate entry points 103
specifying alignment boundary 105
specifying AMODE

description 29
with AMODE option 77
with MODE statement 120

specifying binder input
in batch mode 45

specifying binder options
on EXEC statement PARM field 36, 69

specifying binder output
cross-reference table 100
module map 87

specifying call libraries 56, 117
specifying control statements 47
specifying entry points 83, 109
specifying exit 83
specifying IDR data 111
specifying linkage editor options 162
specifying reusability attributes 163
specifying RMODE 30, 120
specifying upper or mixed case 77
specifying virtual storage size

batch loader 166
binder 36, 94, 99
linkage editor 164
with REGION parameter 36
with SIZE option 94
with WKSPACE option 99

SSI (system status index)
assigning 95, 130
data 95
definition 227
description 130
purpose 95
syntax 95
updating 6

storage management subsystem (SMS)
definition 227

storage requirements
batch loader 166
binder 36
linkage editor 164

STORENX option
purpose 95
syntax 95

storing not-executable modules 95
STRIPCL option

purpose 96
syntax 96

STRIPSEC option
purpose 96
syntax 96

summary of changes xxiii, xxiv
suppressing external reference resolution 57, 77, 117
suppressing IMPORT listing 86

symbols 12
SYMTRACE option

purpose 97
syntax 97

syntax
conventions 101
errors 102

SYSDEFSD DD statement
coding in batch 41
description 41

SYSLIB DD statement
coding in batch 38
description 38
purpose 56
under TSO 44

SYSLIN DD statement
cataloged procedure 42
coding in batch 37
description 37
linkage editor and batch loader requirements 158
primary input 46

SYSLMOD
set z/OS UNIX file attributes
90

SYSLMOD DD statement
block size 81
cataloged procedure 43
coding in batch 39
description 39
under TSO 44

SYSLOUT DD statement
batch loader requirement 158
coding in batch 38
description 38
suppressing output 91

SYSPRINT DD statement
cataloged procedure 42
coding in batch 38
description 38
linkage editor requirement 158

system data
definition 227

SYSTERM DD statement
coding in batch 40
coding TERM option 97
description 40

SYSUT1 DD statement
coding for linkage editor 158
ignored by the binder 35

T
tasks

c89 diagnosis
step 154

ld diagnosis
step 154

TEMPNAME 162
TEMPNAMn 121
temporary data set

definition 227
specifying in JCL 46

TERM option
purpose 97

Index 239

TERM option (continued)
syntax 97

TEST option
purpose 98
syntax 98

text
description 19

trademarks 222
transform table in COBOL overlay program 198
transportable program

definition 227
TRAP option

purpose 98
syntax 98

true alias
definition 227
specifying AMODE 120

TSO (time sharing option)
batch loader 160
enabling for TEST command 98
INCLUDE statement 115
invoke linkage editor 160
LINK command 44
LOADGO command 44

U
UFS

definition 227
UNIX file system

definition 228
unsupported input module formats 157
unsupprted binder control statements 162
UPCASE option

pupose 99
syntax 99

updating SSI data 6
upper case 77
user exit, specifying 83
user interface

ISPF 215
TSO/E 215

utilities (program management utilities)
IEBCOPY 5
overview 5

V
V-con

definition 228

W
weak external reference

deleting 64
unresolved 53

WKSPACE option
purpose 99
syntax 99

workmod
data elements 151
definition 228

workmod element

workmod element (continued)
definition 228

workmod token
definition 228

X
XCAL option

creating overlay programs 207
purpose 100
syntax 100

XCTL macro
invoking from batch loader 159
linkage editor 158

XREF option
linkage editor differences 163
purpose 100
syntax 100

Z
z/OS UNIX

creating program object in 22
set file attributes 90

240 z/OS: z/OS MVS Program Management: User's Guide and Reference

IBM®

Product Number: 5650-ZOS

SA23-1393-50

	Contents
	Figures
	Tables
	About this information
	Required product knowledge
	Required publications
	Related publications
	Referenced publications
	Notational conventions
	z/OS information
	Additional information

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Summary of changes for z/OS MVS Program Management: User's Guide and Reference for Version 2 Release 5 (V2R5)
	Summary of changes
	Summary of changes

	Chapter 1. Introduction
	z/OS Program Management components
	The binder
	Binding program modules
	Enhancements to the binder
	Program objects
	Object module support
	Fewer restrictions
	Application Programming Interface
	Usability improvements

	The Program Management loader
	The linkage editor
	The batch loader

	Using utilities for Program Management
	IEBCOPY
	IEHPROGM
	IEHLIST

	Using service aids for Program Management
	AMBLIST
	AMASPZAP

	Program objects: Features and processing characteristics
	Program object structure
	Program objects on DASD storage
	Residence for and access to program objects
	Extensions to the PM loader to support program objects
	Page mode loading
	Move mode loading

	LLA and checkpoint/restart support for program objects

	Chapter 2. Creating programs from source modules
	Combining modules
	Symbols
	Sections
	Classes
	Common areas
	Parts
	Pseudoregisters
	Entry points
	External symbols

	Object and program module structure
	External symbol dictionary
	Relocation dictionary
	Text
	Identification data
	Module attributes

	Binder batch processing
	Input and output
	Creating a program module
	Creating a load module
	Creating a program object
	Multipart program objects

	Creating a program object in a z/OS UNIX file
	Restrictions

	Program object formats
	Binding
	Assigning addresses
	Resolving external references

	Creation of an executable program in virtual storage

	Addressing and residence modes
	Addressing mode
	Residence mode
	AMODE and RMODE hierarchy
	AMODE and RMODE combinations
	AMODE and RMODE validation
	AMODE and RMODE for overlay programs

	Module reusability
	Binder extensions supporting the Language Environment
	Compatibility with prelinker functions
	Binder support for DLLs

	Chapter 3. Starting the binder
	Invoking the binder with JCL
	Binder JCL example
	EXEC statement
	EXEC statement—PGM parameter
	EXEC statement—PARM field
	Preparing the PARM field to invoke the loader

	EXEC statement—REGION parameter

	DD statements
	Binder DD statements
	SYSLIN DD statement
	Options data set
	IEWPARMS DD statement
	SYSLIB DD statement
	SYSPRINT and SYSLOUT DD statements
	SYSLMOD DD statement
	SYSTERM DD statement
	SYSDEFSD DD statement

	Additional DD statements

	Binder cataloged procedures
	LKED procedure
	Statement description
	Invoking the LKED procedure

	LKEDG procedure
	Invoking the LKEDG procedure

	Invoking the binder under TSO
	Invoking the binder from the z/OS UNIX Shell
	Invoking the Binder from a program

	Chapter 4. Defining input to the binder
	Defining the primary input
	Object modules, load modules and program objects
	As a member of a partitioned data set or PDSE
	Passed from a previous job step
	Created in a separate job

	Control statements
	Modules and control statements
	Control statements in the input stream
	Control statements in a separate data set

	Secondary (included) input
	Including sequential data sets
	Including UNIX Files
	Example A: Putting the whole path in the DD statement
	Example B: Putting a directory path in the DD statement and filename in the INCLUDE statement
	Example C: Putting a directory path in the DD statement and a subdirectory path in the INCLUDE statement
	Example D: Putting a directory path in the DD statement and using dot notation in the INCLUDE statement

	Including library members
	Including concatenated data sets
	Sequential concatenation
	Library concatenation

	Resolving external references
	Incremental autocall
	Autocall with C370lib data sets
	Autocall with archive libraries
	Autocall matching for C370LIB and archive libraries
	Searching the link pack area
	Dynamic symbol resolution
	Specifying automatic call libraries
	Call libraries
	Concatenation of call libraries

	Directing external references to a specific library
	Additional call libraries
	Preventing external references from being resolved
	Never-call option

	NCAL option: Negating the automatic library call
	Renaming

	Chapter 5. Editing data within a program module
	Editing conventions
	Entry points
	Placement of control statements
	Identical old and new symbols

	Changing external symbols
	Using the CHANGE statement
	Example of changing external symbols

	Replacing sections
	Automatic replacement
	Example 1: Object module with two sections
	Example 2: Large program module with many sections

	Using the REPLACE statement to replace sections and named common areas

	Deleting external symbols
	Ordering sections or named common areas
	Aligning sections or named common areas on page boundaries

	Chapter 6. Binder options reference
	Specifying binder options
	Special rules for JCL EXEC statements
	Special rules for options files

	Binder options
	AC: Authorization code option
	ALIASES: ALIASES option
	ALIGN2: 2KB page alignment option
	AMODE: Addressing mode option
	CALL: Automatic library call option
	CASE: Case control option
	COMPAT: Binder level option
	COMPRESS: Compression option
	DC: Downward compatible option
	DCBS option
	DYNAM: DYNAM option
	EDIT: Edit option
	EP: Entry point option
	EXITS: Specify exits to be taken option
	EXTATTR: Specify extended attributes
	FETCHOPT: Fetching mode option
	FILL: Fill character option
	GID: Specify group ID
	HOBSET: Set high order bit option
	INFO: Info option
	LET: Let execute option
	LINECT: Line count option
	LIST: Listing option
	LONGPARM: Long parameter option
	LISTPRIV: List unnamed sections option
	MAP: Program module map option
	MAXBLK: Maximum block size option
	MODMAP: Module map option
	MSGLEVEL: Message level option
	NAME: NAME option
	OL: Only-loadable option
	OPTIONS: Options option
	OVLY: Overlay option
	PATHMODE: Set z/OS UNIX file access attributes for SYSLMOD
	PRINT: Diagnostic messages option
	RES: Search link pack area option
	REUS: Reusability options
	RMODE: Residence mode option
	RMODEX: Extended residence mode option
	SCTR: Scatter load option
	SIGN: SIGN option
	SIZE: Space specification option
	SSI: System status index option
	STORENX: Store not-executable module
	STRIPCL: Remove class option
	STRIPSEC: Remove section option
	SYMTRACE: Symbol resolution tracing
	TERM: Alternate output option
	TEST: Test option
	TRAP: Error recovery
	UID: Specify user ID
	UPCASE: UPCASE option
	WKSPACE: Working space specification option
	XCAL: Exclusive call option
	XREF: Cross reference table option

	Chapter 7. Binder control statement reference
	Binder syntax conventions
	Syntax errors
	Rules for comments
	Placement information

	ALIAS statement
	Example

	ALIGNT statement
	Example

	AUTOCALL statement
	Example

	CHANGE statement
	Examples

	ENTRY statement
	Example

	EXPAND statement
	Example

	IDENTIFY statement
	Example

	IMPORT statement
	Example

	INCLUDE statement
	Example 1
	Example 2

	INSERT statement
	Example

	LIBRARY statement
	Examples

	MODE statement
	Example

	NAME statement
	Example

	ORDER statement
	Example

	OVERLAY statement
	Example

	PAGE statement
	Example

	RENAME statement
	Example

	REPLACE statement
	Example

	SETCODE statement
	Example

	SETOPT statement
	SETSSI statement

	Chapter 8. Interpreting binder listings
	Header
	Input event log
	Private section list
	Program module map
	Simple module

	The removed classes and sections report
	Renamed-symbol cross-reference table
	Cross-reference table
	Imported and exported symbol table
	Operation summary
	The Long-symbol abbreviation table
	Short mangled name report
	Abbreviation/Demangled name report
	DDname versus Pathname cross reference report
	Binder service level report
	The message summary report

	Chapter 9. Binder serviceability aids
	Binder output data sets
	Binder output data sets and their contents
	The IEWDIAG data set
	Allocating IEWDIAG

	The IEWTRACE data set
	TRACE option
	Interpreting the contents of IEWTRACE
	Interpreting binder ecodes

	Allocating the IEWTRACE data set

	The IEWDUMP data set
	Generating a dump in the binder
	Interpreting the contents of IEWDUMP
	Workmod data elements
	Finding the data in the dump

	Allocating the IEWDUMP data set

	The IEWGOFF data set
	Interpreting the contents of IEWGOFF
	Allocating the IEWGOFF data set

	The AMBLIST service aid
	The IDCAMS printing utility
	c89 and ld diagnosis
	Step for obtaining diagnosis information when the binder is invoked from c89:
	Step for obtaining diagnosis information when the binder is invoked from ld:

	Serviceability aids for the Binder API interface

	Appendix A. Using the linkage editor and batch loader
	Creating programs from source modules
	AMODE and RMODE differences
	Unsupported input module formats and contents

	Invoking the linkage editor and batch loader
	Invoking the linkage editor and batch loader with JCL
	SYSLIN data sets
	SYSPRINT and SYSLOUT data sets
	SYSUT1 data set
	Included data sets
	Concatenated data sets

	Invoking the linkage editor from a program
	Invoking the batch loader from a program
	Invoking the linkage editor and batch loader under TSO

	Editing a control section
	Replacing control sections
	Deleting an external symbol

	Control statement reference
	Continuing a statement
	ALIAS statement
	CHANGE statement
	ENTRY statement
	EXPAND statement
	IDENTIFY statement
	INCLUDE statement
	LIBRARY statement
	NAME statement
	ORDER statement
	REPLACE statement
	Unsupported binder control statements

	Processing and attribute options reference
	Supported binder options
	LIST: Listing control
	MAP and XREF
	Reusability
	SIZE: Space specification
	Not-Executable attribute
	Incompatible processing and attribute options

	Linkage editor requirements
	Virtual storage requirements

	Batch loader requirements
	Interpreting linkage editor output
	Diagnostic output
	Output listing header
	Module disposition messages
	Error/Warning messages
	Sample diagnostic output
	Optional output
	Control statement listing
	Module map
	Cross-reference table

	Linkage editor return codes

	Interpreting batch loader output
	Batch loader return codes
	Loader serviceability aids

	Appendix B. Summary of Program Management user considerations
	Migrating from the linkage editor to the binder
	SMP/E precautions
	Storage considerations using the binder
	Error handling in the binder
	Changes and extensions in output using the binder
	Binder control statements and options
	Binder processing differences from the linkage editor
	Other binder processing differences

	Migrating from load modules to program objects
	What should be converted to program objects?
	Converting load modules to program objects
	Compatibility of program object formats
	Utilities, components and products that support program objects
	PDSE program library directory access of program objects

	Migrating from the prelinker
	The binder incorporates Language Environment/370 prelinker functions
	Processing with the prelinker
	Processing without the prelinker

	Support for DLL modules in dynamic link libraries

	Migrating from the prelinker and to DLLs
	Migrating from the prelinker to Binder
	Restrictions and incompatibilities migrating from the prelinker

	Migration of applications to DLL support

	Appendix C. Binder return codes
	IEWBLINK return and reason codes
	IEWBLDGO return codes

	Appendix D. Designing and specifying overlay programs
	Design of an overlay program
	Single region overlay program
	Control section dependency
	Segment dependency
	Length of an overlay program
	Segment origin
	References between segments
	Inclusive references
	Exclusive references

	Overlay process
	Segment table
	Entry table

	Multiple region overlay program

	Specification of an overlay program
	Region origin
	Control section positioning
	Using object decks
	Using INCLUDE statements
	Using INSERT statements
	Following all input
	Preceding all input
	Repositioning automatically called control sections

	Special options
	OVLY option
	LET option
	XCAL option
	AMODE and RMODE options

	Special considerations
	Common areas
	Automatic replacement
	Storage requirements
	Overlay communication
	CALL statement or CALL macro instruction
	Branch instruction
	Segment load (SEGLD) macro instruction
	Segment wait (SEGWT) macro instruction

	Appendix E. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Terms and conditions for product documentation
	IBM Online Privacy Statement
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Trademarks

	Glossary
	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

