z/0S
2.5

MVS Program Management: User's Guide
and Reference

.||I

Note

Before using this information and the product it supports, read the information in “Notices” on page
2109.

This edition applies to Version 2 Release 5 of z/0S® (5650-Z0S) and to all subsequent releases and modifications until
otherwise indicated in new editions.

Last updated: 2021-09-30

© Copyright International Business Machines Corporation 1991, 2021.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

LT =T] =R (|

1= 1+ 1 (=3 -SRI 14

ADbOoUt this INFOrMAtION....cciuiiiieiriritirieretereeeereseacesessasesessesessssasessssesessssesessasesasses XVII

Required product KNOWLEAEZE.cccuvii ettt et e st e e s tee e e saee e e ree e e aee e sabae e s areaeenees Xvii
Yo [V LT =Te I oTU] o] 1 ToF=1 A To] o TS XVii
T E =T o TN o] o= 1 4[] o[- TS USRS XVii
Y (TR aor=Te I 10 o] LToz=N o] =S XVii
NOLAtIONAL CONVENTIONS.iiiieiieeeiie ettt ettt e et e e e e e ta e e e ate e e tbe e e stee e asee s sseeensseeesssaeenssaeennsaesnnses Xviii
r4 L0 SR] (o] 0 =Y 4o 3 VO U RRRE XixX

PV Lo 1A Te] a1 T2 {o] 1 0= 14 o] o O Xix

How to send your comments to IBM.........ccccciuuiiniiniinniniieiieiieiieniececnecsessesssssacaees XXI
If you have a teChNiCal ProblemMi. e e e e e e s e e e ree e aneas XXi

SuMMAry of Changes.....cccciuiiiiiiiiiiiiiiiieiieiieieciceectesiestestsssasssssssssscssssnssesss XXIiil
Summary of changes for z/OS MVS Program Management: User's Guide and Reference for Version

2 RELEASE 5 (V2R5) i uiiiiieiiiiiie sttt et ste st st e st e sta e s be e saa e sbeesbaesabeebaesaseesbaesateebaesateetaensneenrenn XXiii
SUMMANY Of CRANEES..ee ittt e et e e te e e et e e e e ae e e e baeeesbaeeessaeessseseensaeesnseeeansaeeansaeans xxiii
SUMMANY Of CRANEES..ee ittt e et e e te e e et e e e e ae e e e baeeesbaeeessaeessseseensaeesnseeeansaeeansaeans XXiV

Chapter 1. INtroduction......ccciieiieiieiieiieiieiiiiiiiiiciiieiiesieiiatecssssesssssassessassassassens 4

z/0S Program Management COMPONENTS........ciiiiieicieeeiieeccteeeeteeeeteeeeteeesereeesereeesseeessseesssesessesesnsesssnsens 1
B =T o1 e 1= OO RO OO PRUPRRRUPRRPO 3
The Program Management LOAUET.........eiiciiiieiie ittt et tee et e e ate e s tteessateeeesteessnteeessasensseesnes 4
THE LINKAZE EAITON..cc it e e e e e e e e e te e e e bee e sabeeeeabeeesntaeesasaessnseeennsaesnens 5
The DATCN LORUENciiiieeieeiteeecee ettt ettt et e st e s be e sab e e be e s aaeesbeesaaessbeenssesaseensaesnsean 5

Using utilities for Program ManagemeENnt........cueeccieeeiieieiieecciieecctteeecteeeesteeeesteeeetaeesbaeessaeessaeesseessseeannes 5
TEBCOPY ..ttt ettt sttt st e s te e sta e s te s bt e sstessbeesate s beesseesase e seesabe e beesaseenbaesaseenbeenaeesabeebaesase e taesaeeenraan 5
TEHPROGM....utiitteteeeieeie sttt sttt sit e st esbt e st e sbe e sate e baesabeesbeesateesbeesasesnbeesasesnseenssesaseensaesnseensaesnsesnsens 6
TEHLIST tiiteeitteste et ettt st e st e st e e bt e sabe s be e st e s beessee s beeeseessbeessaesaseenbaesaseenbaesaseenbaessaeensaesasesateesaesasaensaeses 6

Using service aids for Program ManagemMeENt........ccccuieeeciieeeiieeeiieeeiieeeiteeecteeesrteeeseeeesaseesssseeessssesnssessnnees 6
AMBLIST ittt ettt et s e e rbe e st e st e e st e st e e bt e st e s beeeaa e et e e e st e e b e e e hee e b e e bt e sa b e e beesa b e e beenate e teentaesareentas 6
AMASPZAP.... ettt ettt ettt et s e st s e st e e e bt e s bt e bt e b ee s b e e be e s bt e beesabe e beesaae e beenaeesreenaaenas 6

Program objects: Features and processing CharaCteriStiCS.....uiuiiuiiiiiieeiiieeciie e 7
Tyl o] o [T ot d=y 4 U Lot {0 TS 7
Program 0bjectS 0N DASD STOrAZE......uuiieiieieieeceieeeeteeeeteeeete e e ete e eeteeesttee e teeesateeessteeseseeesnneeeenseeesnnens 7
Residence for and access to Program 0hJECES......iiuiiiieiiieeiieeece e et 8
Extensions to the PM loader to support program 0bjeCtS.......cccueiecieeecciieecie et 8
LLA and checkpoint/restart support for program 0bjeCtS.......cccvieecieieeciieceeece e 9

Chapter 2. Creating programs from source modules........ccccceruriniiniieiieciecceccenceennn. 11

(0foT 0] o aT 0T =3 aTo e (1] L= 3RS 11
1370 2] 0o =TSR 12
I 7=T03 1 o] 1 1T TR RPN 13
ClaSSES i ieitteeee ettt ettt eeette e e e eeette e e e e e etbe e e e e e e sbaeaeeeeabaa e e e ea bt e b e e seaabareeeenabaaaeeeabtaaeeeenraaeeeenaraaeeeenraneeas 13
(00T 0010 aTeY T L= F< T UPPPPRPPRRRRNt 14
P AT S . et e e e e e e e e e e e e e e e e et e e et et e et ————————————————__a—aeeeeeeeeeeeeeeeeeeererraeretetrrtrnnnnnnnn 14

T T0 o (o] (= =1 £ T PR 15

10} (A 0T 11) £ USRS 15
= a1 V1 0] oo] =SSR 16
Object and program MOAULE STFUCTUIE.....cuuiiiiiieriiieeciee sttt ettt et e st e ssaee e ssaeeessaseesssseessraesanseess 16
=T a1 VA n] 0T M Tt (o] F=Y V7SSOSRt 17
(=1 oTo=\ o] e ITox {To] o =1 Y25 USSRt 18
=) ST PSPPI P PPPPTRUPPRPTROt 19
Ba [=T00 () Tor=N o] a W P £ VO PSPPSR 19
MOAULE AEETTDULES ... ittt e s e e s st e e s bbe e ssaeeessbaessataesnseeesnenesnes 19
BiNder DatCh PrOCESSING. ..cuviiieiiiieiieiete ettt ettt e e st e s s ee e s bee e s beeesbeeessbeeesbeeesaseeessseesnseessnsens 19
B] oTU L A= UaTe Ko 10 f o 11) SR 19
Creating a program MOGULE........cuiiiiiieiciee ettt e s ee e s te e ssreeeseateessnteesesteessntaessssaenans 20
13- T a I o] o [=Tot d (o] o 4= £ TSRS 23
2713 T L1 o= SO OO SOOI 27
Creation of an executable program in Virtual STOrage.......covcveirciiiiiieeiiieenciee st srre e ssee e seeessaee e 29
Addressing and reSidENCE MOUES.....iuciiiiiiieriiie ettt et e st e st e st essbeesssbeesssbeessabeesssseesssseessasees 29
AdArESSING MOUE...cciiiiiiiiiieciie ettt erte sttt s st e s st e e sbee s s beessbeessbeessbaessaseessssaeesssaesssseesssaesssseesnnses 29
T o [T o= g To o [T U PP URROPPRRRPRRN 30
AMODE and RMODE hi€FarChy.....cue oottt rtee e e aee e e e e caee e e s e ate e e s st ae e s s e nnaneeeennnns 30
AMODE and RMODE COMbBINATIONS...cccuutiiiiiiriiieiitersiee st e st e ssreessteessateessreessseeesssseesssseessnseessnseess 31
AMODE and RMODE Validation......ccuiiiiieiriieieiieseee e sieeesieesssiee st e s st e s ste e s saeessseesssaesssseessnseesnsnnas 31
AMODE and RMODE fOr OVErlay ProSramS......ccueiccieerrieersieersieessireesssseesssseesssseesssseesssseessssesssssessssnees 31
1o Yo [0 (=N TN L= o1) /SRR 31
Binder extensions supporting the Language ENVIrONMENT........coviiiiiiiiiiiiienieesieeeiee e ssee e 32
Compatibility with prelinker FUNCHIONS......cociiiee e e e e e e e e e enree e e e enes 32

Chapter 3. Starting the binder.......ccccccvviuiiiiiiiiiiiiiiiiiiiicceeee. 35

INvoking the DINAer WIth JCL...ciuiiiieiieeceee ettt e s e e s sbe e s sbe e s sbeessasaeesaraeenans 35
2] Te [T N O] o= o o] o] (SR 35
EXEC STat@MIENT ..ttt ettt e ettt e e et e e e et e e e e s ane e e e e s s neeeeeeeanneeeeeseneeeesaenns 36
D] B =1 (=T 0 0[] o LA J OO PO U PR P RS UTPRR PRSPPI 37
Binder cataloged ProCEAUIES.......cuviiiiiiieeteeeeerte sttt e e s sbe e s st e s sbee e sbeesssbeeessbeeessseessnses 42

Invoking the BiNder UNAEr TSO.....ciiuiiiiiieiiiieeeiieeeite ettt stee s siee s st e s sbae s sbae e sbaeesbaesssaessseessasaeennns 44

Invoking the binder from the z/OS UNIX Shell..couiiiiiiiiieiieceieeete et 44

Invoking the Binder from @ PrOZram.....cu i iiiiieiieneiieeeit e ssce st e st e st e st e s be e s sbe e s s baesssbaessabeesssseenas 44

Chapter 4. Defining input to the binder........cccccciiviiviiiiiiiiiiiiiciniiciniiiecinccncnen. 45

Defining the PrimMary INPUL.....coiiciiiee ettt ettt e s ee e s s te e s sabe e ssabaessaeeessaeaessaseesnssessnnes 46
Object modules, load modules and program ObJECES......cuiiiriiiiiiieiiiierrre e saee e 46
(000] 0§ o] IS €= 1 (=T 0 4 =T) £ TP a7
Modules and CONTrol STATEMENTS.iiiiiiiirieirieeeee e e s ee e s sbee e s saee e ssreessaeeesaees a7

Secondary (INCLUAE) INPUL...cceie ettt eee e et e e et e e e tee e e tr e e e ate e e aaee e sbeeenseaesseeesseesnnnes 48
Including seqUENTIAl ata SELS....iiiiiiiiiiieeeeete et s e s e s s e e s s be e e s e e e saneas 50
INCLUAING UNIX FIlES..uutiiiiiiiieiieeiiieeecie st sste st e st esite e s teesate e sbteesbaeesseeesssaesssaesssaesnsseesnnseenan 50
INCLUAING LIDrary MEMDEIS. ..o ittt ettt rre e sbe e e sbe e e sbee e sbaeesbaeesabeeesasaesssaeesns 51
Including concatenated data SETS....cuciiiiiiiiiiiieiiee ettt s e s e s e st essaree s 52

RESOLVING EXTEINAL FEFEIENCES. . ciiuiiiieiieitteeetecete ettt e st e s s be e e st e e s sabeeesbaeessbaeessbaeesaseeas 53
INCreMENTAl AULOCALL .c..vviiiiieeee et s st e s s e e s s e e s s be e s s abe e e s abeeesabeeesareas 54
Autocall With C370LD data SEES...ciiciiiicieiiieiete ettt sre e s te e s sbe e s saae e s sabeessasaessaeaas 54
Autocall With arChive LIDFariEs... ..o e s e s ae e s aeas 54
Autocall matching for C370LIB and archive LiIBrariesoceeieieeiicieeieiee et see e ssee e 55
Searching the LNk PACK @r@a......cucuiiiiiiiicieectc et saa e e s bae e sbaeesaeeees 55
DynNamic SYMDBOL FE@SOLUTION....cciiiiiiiee ettt e e ree e e e et ee e e s e ente e e e senbeeeesennseeeeesensseneenan 56
Specifying automatic Call LIDrari@s. ieirciiicie et 56
Directing external references to a Specific LIBrary.....cccocueivcieiiciiniecee e 56
NCAL option: Negating the automatic Library Call......ccoocieirciiieiiiinieieeeeeeeree e 58

RENAIMING. ... ittt ettt s bt e st e e st e e e bee e s bee e e bt e e sssteesasaeeasseeesnseeesseeesnseesnseaesnssaesnsenns 58

Chapter 5. Editing data within a program module.........cccccciviiinireirncrenieciecincincaecees 39

Lo [AT a Tl] 0 177=T01 £ o] - TP 59
10} (A 0T 11) £ SRR 59
Placement of CONtrol StatEMENTS.ei i s s s 60
io]=To) fTor=1 o] o IF= TaTo I A=Y VY30 0] oo K-S 60

Changing external SYMDOLS.cii ittt e s s e e e st e e e s beesssbeessabaeesasaeens 60
USIiNg the CHANGE STatemMENt......ciiiiiiiicieieiiee sttt ste e ste s see s ite s st e s s e e s sbe e s s e e e sbeessabeessaseessanas 60
Example of changing external SYMBOLS........oiiiiiiiiiiice e s s 60

=T oTE= Tol] Y= Y=ot £ o] o = F PP RRRRPR 61
JANT) oY a =Y Aol £=Y o F- Tt =Y 3 =Y o oSSR 61
Using the REPLACE statement to replace sections and named common areas.......cccceveveeriveerieneens 63

Deleting eXternal SYMDOLS. ...cuciii ittt s st e st e s be e s st e e ssabeesssseesssbeessnbeesnnseess 64

Ordering sections Or NAMEd COMMON AIEAS.....c.ueiirierrrrierreieesaeeesseeesseeesaseeessseesssseesssseesssseesssseesssseessnes 65

Aligning sections or named common areas 0N Page boUNANIES.......cccvirvvieiriieiriiee e 66

Chapter 6. Binder options reference.......ccccceeierieieiieieieniecentecicestecesceseecescecsecessecss 09

Yo L=Yol 1Y TaV=8 o1l e [=1 o] o) Alo] 1 1< F U ST PUSPRRTR 69
Special rules for JCL EXEC STatemMENTS. ..o uiiiei ettt eettte e eeettre e e e etree e e e e savee e e s esnvreeessensaaeesenannns 70
Special rules fOr OPTIONS fIlES...ui i ittt e e s e be e e e e enre e e e e e araeeeas 71

[T e [T o] o) (1o 1= RSNt 71
A OSANT) daTo] 2=\ o] a JeXoTe (=] o) {To] o PSR SRN 76
ALIASES: ALLASES OPtiON.ciiiiitiieeiecctieeeeeectteeeeectteeeeeetateessebeeeeessesseeeessansseeessanssenessessenesssssssnsessnnssenes 76
ALIGN2: 2KB page alignment OPtiON.....ii ittt ettt sste e st e st e ssate e ssseeesssbeessseaessaseess 76
AMODE: Addressing MOAE OPTION.....iiiiiieiiierrtteereesste st e s e et e s s bee s s beessbeessbeessbeessseessseessnnens 77
CALL: Automatic Library Call OptioN.... ettt e e e e ee e e e s erbr e e e e e erree e e s ensaeeesennns 77
(078 S OF- 1Y oTo] a1 o] Ae] o} 4o o VS 77
COMPAT: BINAEr LEVEL OPTION..ciiiiitiiieee ettt e et e et e e s e sbae e e e e e abee e e s eensteeeesennsaneesennssnens 78
COMPRESS: COMPIreSSION OPTION...iiiicctieeieceiieeeeecitee e seetteeeeeetteeesessbeeseeesnseeeesesssaesssssssessssssssneesennes 80
DC: Downward compatible OPTiON.......cei e e e e e e e et e e e e erree e e s e nree e e e e nnrnes 81
D101 =130 o1 1 o o 1SR 81
DTN A7 A NN i e o) o o P USSR 81
1) I =T [o} o o OSSP 82
L = Y VA oY T] o) (o VUSSR 83
EXITS: Specify exits to be taken OPtioN.....c..ueii it e e e e e e e e e 83
EXTATTR: Specify extended attribULES.......couiiiciiiee ettt e e e et re e e e e e e e 83
FETCHOPT: FEtChiNg MOTE OPLION...uuiiiiiieiiee ittt sttt see e s ste e s see e s ste e ssaee s ssaee e ssseeesneeesnneas 84
o R Lol F=Y = Tt £ =T o] o) £ o o 1SR 85
GID: SPECITY BrOUP ID.uuiiiiiiiiieiieeeciieeectt ettt st e st esate e st e e s abe e s sataesseeesssbaesabaesssseesnaseesnnseesnnses 85
HOBSET: Set high order bit OPtioN......cuiiiciiiriiccieeeee ettt saee e s saa e e s bae e saaeesneeess 85
B\ L@ IS 13 (X o] o) 4o 1S USRS 85
I Y o Yol U (=N o] o) o o 1SR 86
[0\ =0 I IR o TN oo T U o] o) £ o o PSSR 86
(IS 1S3 T ¥ =] o1 (o] o PPN 86
LONGPARM: LONE Parameter OPTiON.....cviiiiiieriiteeiitesiieessieessiteesseeessreessbeessaseesssseessseesssseesssseessanes 87
LISTPRIV: List unnamed SECtIONS OPTiON..iiiiicciiieeiecitie e e eecteee e e ectte e e e e iree e s e eree e s s eesbe e e s esnbeeeesennseneens 87
MAP: Program module Map OPTiON.....c.ueiecieiriiieeiiteeiie ettt eesiteessrreessraeesssreessaaeesssseesseeessseesssnens 87
MAXBLK: Maximum BLOCK SIiZ€ OPTiON...cciiiceiiiee ettt e e e re e e e s e rae e e e e nree e e e eanes 88
(OB 1 N VAN S 7 o Te L] (= a g F= Vo X o] o {] o RS 88
MSGLEVEL: MeSSage LeVel OPTION.....uiiiiiiiiiiee ettt ettt et ssaee s sree s sbeeesnees 88
N AN N S 7Y 1 =0 o) £ o PSR 89
(O] I @1 AV Ko T=To F=1 o] (=N o] o) {] o S 89
(O] O T N ST O] o) dTe] a =0} o) { o] o PSS 89
(O XY A A O 1YY o PNV A o] o) 4o o PSSR 89
PATHMODE: Set z/OS UNIX file access attributes for SYSLMOD........coooviiiiiiiiiveeiiiceeeeeee e eeeeeeeees 90
PRINT: DiagnostiC MESSAZES OPTION..cccuiiiiiiieiiiiteiitesrite st e st e st e s st e s sbeessbeessabeessabeessssaessaseessasens 91
RES: Search link pack ar€a OPTioN......cciccciiieeicciiiee ettt eetee e e e e etre e e s e e ate e e s e enraee e s eenssaeeeeensees 91

vi

LU U ET=Y o 11U YA o] o1 4o 17 91

RMODE: Residence MOdE OPTION.....cciccuiiiieccciieeeecciiee e ectee e e re e e ee e e e s e saree e s eenbeeeeseenbaeeesennssenesans 92
RMODEX: Extended residence MOde OPtiON........ueeiieciieeeiciiiee e cectiee e eeree e e ecrree e s e evaee e s e ensaeeeeeennees 93
YO8 I 2SS Tor- Ui = gl (o =T o o £ 0] o SRR 94
S (T ST (1N o] o1 (o PSS 94
YW SS0S] oF- (ol XY o 1= Tol | o= LA o] g e o] £ 1] o NSRS 94
SSI: System Status INAEX OPTION......iiiiicciiiee e eecteee e e ree e e e e e e e e sbe e e e s e e bteeeesenseeeesesnssenenas 95
STORENX: Store not-executable MOdULE........ccuiiiiiiieee e s s 95
STRIPCL: REMOVE ClasSs OPTiON.ciiiiiciiieeiceiiieeeeecittee e eectte e e s eettre e s e sareeeeseabeeeeseenstaeeesensteeeesessenessennssnees 96
STRIPSEC: REMOVE SECTION OPLION....uuiiieiieciiiieieciieee e eestte e e eeetee e e e e streeeeesssbeeeeesanseeeessenssasesssssseneessnnnes 96
SYMTRACE: Symbol reSOLUTION traCiNg......ccccuiiieiiiiiieeiiieeisieeseiee st e sere e sseeesseeesssteessneeessseeessseeesnes 97
TERM: Alternate OUTPUL OPTiON.....uuiiie ittt e e e rre e e s e tte e e e e e nre e e e senbaeeeseensaeeeeeennseneenan 97
QIS A =13 A o) 4 o o USSR 98
IR A gl =Y ol £ =Tol0 V7= Y UURPRRRRE 98
(0] o T=Tod) A U 1= Y 5 SR 99
UPCASE: UPCASE OPTiON....utiiiiicciieeeececitee e cecitteeseettteeseectteeeeseensteeesesstasesessssasesssssessssennsenessenssneeannns 99
WKSPACE: Working space specification OPtiON.......cciiieiieiiiieiiieeiniee st ssieessree s e ssreesseeesseeesnee 99
XCAL: EXCLUSIVE CaAll OPTION...eiiiiiiiiiie ettt e ttee e e e aree e s e e e e e s enbteee s eessaeeeeennseneas 100
XREF: Cross reference table OPtiON.... ... ceieie ettt e e e e e e ee e e erae e e e e nraeeeeeas 100

Chapter 7. Binder control statement reference........cccccccvievirnircrniincrecincinciecneens. 101

Binder SYNTaX CONVENTIONS.uiiiiieciieee e cciiiee e eectie e e e eetre e e e e e stteee e seebeeeeseesseeeeseansenaesesnstasesesasssnessasssenees 101
YL T] ST 102
RULES fOr COMMIENTS.c.i i ittt e e e e e e e e e e e e asbabaereeeeeeeeesesanssssssseeeaeeeeeees 102
PlacemMENt INTOIMATION. . .uuiiiiiiiiiei e e et e e e e e eababbeeeeeeeeeeeeeesasssssseseeseeseeeeesannes 103

ALTAS STAtEMIENT. .. i et rereeee e e e e eeeeeeeeeeeeessaesesss s s st s s s s nsaanaannrsaaseeaeseeeaessessssssssessssnnen 103
D=1]] (= T PSR 105

L]\ =1 =Y (=10 4 L= 0 U 105
D=1]] (= T PSR 106

AUTOCALL STAtEMENT. .. iceeeee e e eee et e eeeeeeeeeeeeeeeeeeeessessessssassassssssansnnnnnaaassesseaeaseasessessenns 106
D=1]] (= T PSSR 107

CHANGE STAtEMENT... et rereee e e e e e eeeeeeeeeeeeeseesess e s s s s s s s s s n i aaaseesaesasaeessssssssssssssssnns 107
D=1 1]] (=SSR 108

L A R =] = L(=T 0 1=] S UPRPURPPRNt 109
D=1]] (= T PSSR 110

L=y A N B IS = 1 1=T 0 1= o | S PURRURRRRRRRN 110
D=1]] (= T PSSR 111

B I S =Y (=T =T o) Ut 111
D=1]] (= T PSSR 112

L O] Iy =N =T 0 4 1= o U 112
D=1]] (= T PSSR 113

INCLUDE StAtEMENT. .. e ciieeeeee ettt rreeeeeeseeeeeeeeeeesasssssessessssssssssssnannnnnaaasesaeaeeeeesesssssenns 114
D=1 1] (=0 SRR 115
D=1]] (=SSR 116

LN S = R =1 =X =10 4 L= 0) SO 116
D=1 1] (= T PSR 117

(I 2] Y =] = 1 (=Y 0 0 L= o S UU S 117
D=1 1] 0 (= SRR 119

MODE STATEMENT..ccciititiiicicccceeeeee et eee e eeeeeeetee et reeeeessesseeeeeeeeesssssssssssssssssssssnnnnnnnaaeeseeesaeeeeessssssens 120
D=1] (= TSR 121

[N TN N =Y =Y (= 0 a1 o U 121
D=1] (= T PSR 122

ORDER StAtBMENT.... i iiiiiie ettt eeeee e e e e e eeeeeeeeeeseesee st s sa s s s s s s s s s naa aaaasesaesesasesessssssssssssssnnsnnen 122
D=1] (= TSR 123

OVERLAY STatBMENT .. . ciiieiiii ettt eeeeee e e e s eeeeeeeeeeeeeeeessease s s s s s s s s s nanannaaaseeeaseeeeeesessssssssesssssnns 123
D=1] (= TSR 124

LAY O] =y =Y (=T 0 0 =T o) U 125

D=1] (= TSR 125

REN AME STat@MENT.c.eiiiiiieiiiieeieeeeeeeeeeeeeeeeeeeeeeee i eeeeeeeeeeseeeeeeeeaeasessessssssssssssssnssnnnnnnaaaeseeseesesasssessenns 126
D=1 1] (= TSP 127
REPLACE STatBMENT... it essee e e e e e e e e eeeeeeeeeeeesee s s e s s s s s s s s s na aasasessesaaesasasssssssssssssssssnns 127
D=1 1] (= TSR 128
] = OO] D] =] = (=] 1= o | ST 128
D=1 1] (= TP 129
] = O] o B - 1 (=1 1 1= o) USRS 129
] = BT 1 =1 (=10 4 L= 0) S URPPRRURRNt 130

Chapter 8. Interpreting binder listings.......ccccciviuiiniiiiiiiiiiciniciciinnieninnneenee 131

[L= 1o 1= SRS PUTIT 131
LYo UL A CA LY o (o = PSP 131
Private SECTION LiST . uiiiiiiiiiiiiieieeecie ettt et e st te e st e e s bt e e s b te e s saeesstaessteesssaesssaesnnsaenns 132
Program MOAULE MAP....c.uiiiiiiiiiiieiciee ettt e st e st esseeessateessseeesssteesssbeesassaesssseesassaessnsaesssseessnsaesas 132

Y10 0] o1 E= I yaTo T LU T =SS 133
The removed classes and SECLIONS FEPOI . .iiiiccuiiieeieciieeececiree e eecrre e e e etee e e s e creeeessenreeeeesenreeeesessssaeesann 137
Renamed-symbol cross-reference table........o e 137
CroSS-TefErENCE TADLE.....iiiiie et ba e e s ae e e sraeeeaee 138
Imported and exported SYMbBOL table.......uo i e e e are e e e 139
(O] o1 =N o] aIE=10 1 'a] 0 g F- 1 /8 SS 140
The Long-symbol abbreviation table......... e 143
S1aTe] gl a = TaT={(Ta Mo T o a =l =10 oY ST PRSP PPPPR 144
Abbreviation/Demangled NAME FEPOI......ccciiiiciieeiieerre ettt ettt see e s rreessaeeessaeeessseeesseaesssseess 144
DDname versus Pathname Cross refe€renCe rEPOIM.......eiiicciiieeiecciiee et cree e e e eee e e e e enaae e e e enns 145
BiNAEr SEIVICE LEVEL FEPOI .. uiieii ettt e e e e rree e e e e bt ee e e e s asteeeesenssaeeesesseneessnnsenesesnnnes 145
The MESSAZE SUMMATY FEPOM . ciiiiieieiie ittt eriee et e s stee s sttt eesteesseeeesateesssteessseeessseaessseessnsseesnseessnseeesnsees 145

Chapter 9. Binder serviceability @ids.....ccccccevtuiiieiiniinieiicenieiecieciceciececceneececcenees 147

T Te [T o 10N o] UL e F=1 €= Y=Y £ 147
Binder output data sets and their CONTENTS.....cciicciiiii e e raee e 147
The TEWDIAG data SET...iiiiciiiiieieiiee ettt ettt ettt s e e s st e s sbe e s sba e s s be e s sbaessabeessaseessasaesssses 148
The TEWTRACE data SET..uiiiiiiiiiiieiciieieite ettt ettt et e st e s ste e s sate e s ssteessataessssaessssaesnnseesnns 148
The TEWDUMP data SET...iiiiiiiiiiieiiee ittt sete e st e st e s sate e seaae e ssate e sssteessseaessntaessnsaessnsassnes 151
The TEWGOFF dat@ SET.uuiiiiiiiiiieeiiee sttt sttt et e st e s see e st essate e ssateessataesssseesanteessnsaesnnsaesas 153
The AMBLIST SEIVICE @I...uiiiiciieieiieiiiieieiteesite ettt e st e s ssree e s beeesbeeessbee e s beeesseeesseeesseeesnseessnseessnnees 153
The IDCAMS PriNtING ULILITY..eeecieeeiieeeiiieeiitessee sttt e st essbe e s be e s s e e s s e e s s e e e sabaeesaseessanes 154
€89 AN LA dIBBNOSIS..eiiiiieieiiteeitee ettt ete ettt ete et e e st e e st e e sbt e e s bt e e sbaeesbaeesssaesssaeessaesssaessseeenns 154
Serviceability aids for the Binder APT iNterfaCe......cuuiiiicciiiie ettt s 155

Appendix A. Using the linkage editor and batch loader.........cccccceeucruiiniiniiniinnne.. 157

Creating programs from SOUICE MOAULES........iiiiiiiieiiiieiieeeiee et ee s siee s sree e s sree e s saee e sseeesnneas 157
AMODE and RMODE diffErENCES.ciiuiicieerieetienee ettt ettt s e e s e sneesmeeeas 157
Unsupported input module formats and CONTENTS........ceiieeciieeieeciieee e 157

Invoking the linkage editor and batCh Loader........cuiiiiiiiiiiiiice e 158
Invoking the linkage editor and batch loader With JCL.......coocviiiiiiiiiiiiiieeccee e 158
Invoking the linkage editor from @ ProOSram......cciciciieiriieiriieerieeseee st e s e s sre e ssre e s s e e s baesssaeens 158
Invoking the batch loader from @ Program.......c.ciiciiiieiieiiiee ettt s e e s saeeesnee 159
Invoking the linkage editor and batch loader under TSO....ccociiiviiiiriii i 160

(Sl [{1 a=4=WoTo] ol 1 {o] B=T=To1 101 VOO USROS 161
T oY= oi T a Y =R oo Yo} 1 fol H=1=Tox £ To] o 13T 161
Deleting an external SYMBOL.......coiviiiiiiiiieeee ettt e st e s s te e s s ae e s seeessaraesnaee 161

Control statemMeENt FEfEIENCE. ..o ittt s s s e re e 161
CoNtINUING @ STALEMENT...ii ittt ettt e s sbe e s s be e s s be e s ssbaessabeesssseessasaesnnss 161
ALTAS STAEMENT.c. ittt sttt e s et e s s e s s e s e re e s s ree s emree s emneesennee 161
CHANGE STatemMENT..c. . eeiiiiiieieee ettt sttt s e s e e st e s emeee s emeeesemeeeseneees 161
ENTRY Stat@mMent...ccoccueiiiiiiiiiiitittc e e 161

vii

oy A N D] =Y (=] 1 a1=1 | PR 161

IDENTIFY STat@MENT. ettt ettt e e e e e e e e s r et e e e e e e e s e s e nnmnreeeeeeeeeess 161
INCLUDE STat@mMIENTt...ccc o eeeiieeeetitee ettt ettt ettt e e e ettt e e e s et e e e sttt e e s e ebeeeseeanseeeeeenneeeeeeanneeeeannn 162
LIBRARY STATE@MENT ...ttt ettt e ettt e e s et e e e e e st e e e e e nne e e e e e st eeeeeaneeeeesennenaeanan 162
NAME STAtEMENT. ...ttt e et e e e st e e e e s et e e e s s st e e e e e enneeeeesenneeeenaanns 162
ORDER Stat@mMENT ... ettt ettt ettt e e ettt e e st e e e s e bet e e s e nr et e e s nreee e e e nreeeeeaas 162
REPLACE STatEMIENT.....n ittt ettt ettt e e e et e e e sttt e s s ee e e e s e eanreeeeeeanreeeeeeannneeeaanan 162
Unsupported binder control StatemMENTS........cuiiicciiiei et e s e ree e e s eaaeeeeean 162
Processing and attribute OptionS referENCE......ii ittt 162
YU o] oTe]nd=Te l T aTe [=T oY o) Ao] a1 162
LIST: LISTING CONTIOL..ciiiiuiiiiiiieiiiee ittt ettt e st e st e e s sate e ssate e ssaeeessaeeesnteesseaessstaesnseaessnseesnnes 163
MAP QN XREF ...ttt ettt e s te e s te e s sate e sssteessteessstaessstaessssaesnssaesnnseennn 163
BT EST=Y o | L Y75 SRR 163
WA S oF- (oL I] o1 Tox | o= | £ o] o U 163
NOt-EXECULADLE @ttriDULE. c..eiiiiie e s ree e s ee e s be e e saaeas 164
Incompatible processing and attribute OPLIONS......cociiiiiiiiiiieceee e 164
LiNKage editOr FEQUINTEMENTS....iiiiciei ettt ettt e et e e s ee e e s te e s s be e e sbeessabeessaseessaeeesnssaesnnsaesnneens 164
Virtual STOrage rEQUINEMENTS. . .iiiiiiieiieeeiitercte ettt e st e st e st e s sbe e s s beessbeessabeessabeeessseeessseessnsens 165
S o oI (oY- Vo [T gl £ [V LT =T 0 a =T o | £ 166
Interpreting lINKage ditor OULPUL.....iccuii ittt e s see e s saee e s saee e s see e sneeesaneas 167
BT o Fy Aol o101 4 01U | PSRRI 167
OULPUL LISTING NEAUE ... eiii ettt e st e s s be e s sbe e e s bee e sbaeesasaeesasaeenaee 167
ModULE diSPOSITION MESSAZES. . .viiieiieiriitiriieieiteesiteesreeesteeesteeesteessseessseessssaessssaessseesssseessssessnnes 168
ErrOr/WarNiNg MESSAZES. i icuveiiriieirieeirieeisieeesteeesteessteessteessteesssseessseessseesassesssseessssesssssesssssessnnes 168
SamPLle diag8NOSTIC OULPUL.....iiiiiieieie ettt ettt e e ste e s te e s s b e e e ssbe e s sbaesssbaeessseessssaessssaesnnns 169
(0] o) dToTaF=1 o 11} o 11 SRR 170
LiNKage editOr FETUIM COUBS....uiiiiiiiiiiiiiciteecite ettt sttt e sttt e s ate e s sbeeessteesssteesneeesasaaesaseaesnnsaean 172
Interpreting batch loader OULPUL......ccuii ittt s ee e s e e s saee e s aee s 172
BatCh Loader FEtUIN COUBS.....uuiiiiiiiiieiite ettt sttt e st e st e s s be e e s be e s s baesssbaessaseeas 173
Loader Serviceability @idS. e e e e s et ee e e e e nrae e e e eennrees 174

Appendix B. Summary of Program Management user considerations................... 177

Migrating from the linkage editor to the DINAEr.........ci e 177
NN S o] f T o= TN 4 o] o TS 177
Storage considerations USING the DINAE ... s e 177
Error handling in the DINAET ... e e s e s aee e ssaneeeas 178
Changes and extensions in output USING the BINder.......coociiiiiiiiiiiiiiiiec e 178
Binder control statements and OPtIONS.....c.uiiiei it e e e e e e e e e e e e aaaeeeeas 179
Binder processing differences from the linkage editor......cccvvcieiiiieiniieeiiieercieerree e 179
Other binder processing diffErENCES.ccviivciiiiiieeceeete e e s s s ae e s e 180

Migrating from load modules to Program ODJECES.....covuiiiriiiiiiice e 181
What should be converted to program ObJECES?....ccccuiiiiiiiiiiiiiieceeee e 182
Converting load modules t0 Program ODJECES.....ccuiiiiiiiiiiieriteete ettt et e s sbe e s s aee s 182
Compatibility of program object fOrmMats......ccciiiiciiiiiieicieeete e ae e s rae e 182
Utilities, components and products that support program objects........cceceerrviirniiieinieensieenseeens 183
PDSE program library directory access of program 0bjeCtS......covvivirveiiriieinieeiniec e 183

Migrating from the PrelinKer. ..o ittt ee e s ste e s s be e s steesssbeessseaeenns 184
The binder incorporates Language Environment/370 prelinker functions......ccccccevvveernieeincieennnnen. 184
Support for DLL modules in dynamic liNK lIDrari@s......ccuueeeececieeee et eecree e eecveee e e eevee e e 186

Migrating from the prelinker and £0 DLLS.....c.uiiiiiiiriiieeiieecteeeee ettt et ssiae e s aee e ssaeessaaeesaeeeas 186
Migrating from the prelinker t0 BINAET . ..ottt e s s s see e s 186
Migration of applications t0 DLL SUPPOIT....cciiciiiiiiiiiiieeiiee et e srte s ssrte s ssreessieessbeessree s sabeessvaessaneas 187

Appendix C. Binder return codes........cccccieiieieiieninienieceteciecentecsecessscssessecsssesseceess 189
TEWBLINK return and rE€aSON COUES. . uuuiiiiiiiiii ettt e e e s e e s e e e e s eeseeeseeeeesessssassaaasanaasnnsanns 189
TEWBLD GO FEIUIN COUES..ccevuiiitiitiieeeeeeeeee et et e e et e ee e e e e ettt eeeebaab s s sesseeseeseasssaasseeeesersssssssssssnnannnnnnns 189

viii

Appendix D. Desighing and specifying overlay programs........ccccceceecnecrecnecnecrennens 191

DeSIZN Of AN OVEILAY PrOZIaM i ieicciieeriieeeiteeeitee ettt e ettt e sstteesstteessbeeesasaeessaessssaessnsaeesasaesssssesssseessssaeesns 191
SINGLE regiON OVEILAY PrOBIaAM...ciiciieieieeieiee ettt erteessteeeseeessrteessseeessseeessseeessseessnseeessseessnseesssseasssens 192
MULtiple region OVEILAY PrOSIaM...ciiciiiicieeiiiee ettt eciteessteessteeseteesssteesssteessstaesssseesssseesssseesssseessnseesan 200

Specification of an OVErlay PrOZrami. ... ittt s e e s s te e s sbe e s sbee s sbeessabaessans 202
Y= T0] a I oTu =41 o OSSPSR 204
CoNtrol SECTION POSITIONING...ciiiciiiiiiieirite ittt eree et e st e ssre e e sbe e e s rteessbeeessbeessstaesssseesssseessssesssseesnnen 204
Y01 To1 F=1 o] o] £ T0] o 1SR 207

Y oLt F- Y ol] a1 o [T =Y o] |- R USTRNE 208
(00e] paTa o] IF= T =T T O PO U UT PSRRI 208
FAN T} oY a =Y Aol £ =Y o1 E- Tot=Y o =Y o oSSR 209
S (e =Y ot= I = Te LT =10 =10 (TR 209
OVeErlay COMMUNICATION. . ..ttt icciiieececciee e e eectre e e e et e e e e e cree e e e eerteeessesteeessesnssaeeesansseseesannseeeesenssanesnnns 210

Appendix E. ACCeSSIbility..cccciiiiiiiuiiiieiiniiiieiiiieiiiiiietiiieiiecintesiecestessecessecassassncans 215

ACCESSIDILITY FEATUIES....eieii ittt ee e e e e e e e et te e e e eeataeeesessstaeeeesnnbeeaeeeanstaaesenssanasanan 215

Consult asSISTIVE tECHNOLOZIES.uiiieiiieiiieetee ettt ettt e s st e s aee e ssaee e s abaesnasaesnaeas 215

Keyboard navigation of the USEr iNtErfaCe. ..ot ae s 215

Dotted decimal SYNTaX dia8ramiS. . .cu e cieeriieeeireeeciee st e st e st e s steessateessseeesssteessssaessseesssseesssseesanseesan 215

N 0 4o - N 219

Terms and conditions for product doCUMENTAtION........uiiiiiciiiie e ree e 220

IBM ONliNE Privacy Stat@mMENt....cc i iiee ettt e e ctree e e e ette e e e s etee e e s senra e e s s ntaaeesesnsaneesennnsenensan 221

oY Tor VA (o TRV [oI U] o] oo Ta (Yo I A F=T e KTV 7 U TSR 221

MiniMUM SUPPOITEA NAIAWAIE....cccc ettt e e e e e s ree e e s e bt e e e e e s abe e e e eenseaeeeennseeneas 221

Programming interface iNformMation. ... e s e s e 222

= e (=100 =T OO O OO RUPRROPPRRUPRPRNt 222

GlOSSANY . cuiuuiuiiuienieientaneetestesentassecastossssesssssssassssassesssssssssasssssssassssassassssassassssassasas 223
INO@X . teuireiirniiieiieeitecreiireiieesiaesrassressrssssestassrssssssssssssssssssrassssssssssasssssssssssnsssnssanss 229

Figures

1. Using Program Management components to create and load programs.......cccceccveeecieeecreescieescieescneeenns 2
2. Preparing source modules for execution and executing the program.......ccccceeveieercieeecieessieeeseeesseeeeane 12
3. SECtiON/ClasS/ElEMENT/SITUCTUIE....coiiiiiiiieeeeeteee ettt e e e e e e e s e r e eeeeeesesssssasssaesreeeseesesesns 14
4. External names and external refereNCES.ciiciirreriieeie ettt sttt 16
5. Input and outpUL fOr the DINAEI....ic et et ree e s re e e e re e e e rae e e aes 20
6. A program object produced by the DINAEr........civuiiiiiiiieece e e s e e sbee e eaee 21
7. MULLIPLE SEEMENTS ... uiiiiciee ettt et e s te e e tte e e e ate e s ree e e seee s ateesseee s seeesseeeestesenseeesnseessnsaeesnsens 28
8. Use of the external SyMbOL diCTiONAIY.....ciiicciiiie et e e e rre e e e e bree e e s easae e e e ennaeeee s 28
9. BINAET JCL @XAMIPLE.. . eiieciieecitee ettt ettt ettt e et e e e tee e e ebe e e e be e e sbae e e baeeebaeeeasaeesasaeesnseeesnsasesnsaeeansaeesnsenennes 35
10. Processing of one INCLUDE coNntrol Stat@mMent.......cccueiiiiieiiiiiiiiieccieescieessteessreessveessveessveessseesssnees 49
11. Processing of nested INCLUDE control Stat@mMeNts.......ccceieeiiieeiiiecieeciee ettt vee e vee e vne e 49
S o 1) AT =3 W 1 aTo Yo (1] =PSRRI 59
13. Changing an external reference and an entry POiNt........cccceeieiiiicie e e e 61
14. Automatic replacemeENnt Of SECHIONS.....ccuiiiii et rre e e e rrre e e e e sare e e e eearaeeeeeenbaaeeesnnnnes 63
15. Replacing a section with the REPLACE control statement......cccceeveerieineinienieenienieeneesie e e esee s 64
T BT =Y] Y=g B Y=ot £ o o PO USRS 65
B O e LY T Y= Y=Y ox o] TSR 66
18. Aligning sections 0N PABE DOUNUAIIES.ccciiiriieiecte et eete e eee e ree st e e e sre e e sbe e e ste e e sareessreessnseessanes 67
19. Example of special rules for JCL EXEC StatemMents.......cccueiecieeeiiieeiieeeiee ettt et e e e evee e vee e 71
20. Example of special rules for JCL EXEC StatemMeENtS.......ueiiicciiieeieciieee et eereee e eerree e e evree e e raaee e 71
21. Overlay structure for INSERT statement @Xample......oocieeeieeecieeccieeccee e 117
22. Example of an output module for the ORDER statement.......ccccuveeeieeeiiieiecciieee et 123
23. Example of an overlay structure for the OVERLAY statement........cccueeecieeeiiieccieeccieeeee e 124

xi

xii

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45,

46.

47.

48.

Example of an output module for the PAGE state@ment........cooocciieiiccciiieececeee ettt e 126

Sample BIiNAEr iNPUL EVENT LOZ. i it e st e st e e be e e s ve e s s abee e sabae e nbeas 132
Sample binder private SECtION LISt FEPOI.......uiii i rrree e e rree e e e e nree e e e enneees 132
Sample binder module Map (Part L 0f 2)....cueicieeieecieeeee ettt et este e s aeebe e s e e eveesrae s 134
Sample binder module Map (Part 2 0f 2) ... et et et e 135
Sample binder module map - Overlay (Part 1 0f 2)....c.occeieiecieeeeeeeee e e 136
Sample binder module map - Overlay (Part 2 0f 2)......eei ittt 137
Sample binder renamed-symbol CroSS-refereNCe........iiciiiiccii it 138
Sample binder cross-referenCe table..... ..o e 139
Sample binder imported and exported symbols table.........cceiiiiiiceicciee e 140
Sample binder save operation SUMMAry (PArt 1).....ccceeecieeeeiieeecieeecieeeceeeeeieeeeeteeeestee e e eree e ereeeeaeeeeans 142
Sample binder save operation SUMMAry (DAt 2).....cccuecceeeieeeiieeieeeeeereesee e e e ereesreesaeereesaaesseeseas 143
Sample binder load OPeration SUMMAIY........uuiiiiiciiiee e ccciiee e eerre e e e e rree e e e e esee e e s eenraeeesenaseaeesennsens 143
Sample binder long-symbol abbreviation table.........cocuiiiciiiieiieeceeee e 143
Sample binder short mangled NAME FEPOI.....cocuiii i saee e s saees 144
Sample binder abbreviation/demangled NAMES rEPOI......cccveiiciee e e 144
Message summary report (variable truncated)......ocveeceeeeecciece e 146
LI I Y- 1 0] o] (=T 149
EWDUMP sample — Workmod tOKEN @r€a.......cccuuieee ittt eetee e rae e e s svae e e s e e nrae e e 152
Incompatible processing and attribute OPtiONS.....cccuiiecieeeiiieceeeee e e 164
Diagnostic messages issued by the liNkage editor.......ccuiviiiiiiiiiiieiieeee e 170
Linkage editor module map and cross-reference table........cevceeiiciiicciic e, 171
S ol g (oY= Vo [T ol Vo Te L] K=Y a g F- T o TSRS 173
INVOKING the PreliNKET .. .vii ittt e et e et e st e e s ate e sebteeseatee s steessteessseesassaesssessnsseennns 185
PrelinKer @lIMINATION. ...ei e sttt e st s b e s bt e s r e e b e s e e b e e saeeenneas 186

49.

50.

51.

52.

53.

54,

55.

56.

57.

58.

59.

60.

61.

(00] a1 ol I =Tox (o) Al [=T o1=Y gL [=Y o ot =Y SRS 193
Single-region OVErlay tre@ STIUCTUIE......iiciii ettt rre e e eee e e etee e s be e e s sree e s sbee e s baeesabaeesaseas 194
Length of an overlay MOAULE........cuii ittt ste e s s be e s s teessareessseaesnnes 195
Segment Origin aNd USE OF STOrAZE...ic ittt ettt et e st e e e be e e s ae e s s ba e e s abaeesntaeennees 196
INCluSiVe and eXCLUSIVE SEEMENTS.....iiiiiiiiciieiriee ettt e st e st e s ste e s be e s s be e s s beessbeesssseesssbaessssaessnseeens 197
Inclusive and eXClUSIVE refErENCES......coviviirieieteeie ettt e 198
Location of segment and entry tables in an overlay Module.........occiiiriieiiiienniienniereeeee e 199
Control sections used by SeVEral Paths..... .ottt et 201
Overlay tree for MUltiple-regioN PrOSram... ...t i iiiiirriieirrie et e ieeesree e st e s sreeesbeessreessaraesssaeesseesnnes 202
Symbolic segment origin in SiNGle-region ProSrami.....ciiccieeeiieeciieeecieeeeeeetreeereeeereeeerareeeseaeesseeaans 203
Symbolic segment and region origin in multiple-region Program.......ccccceeervieerrieeeenieeesnieeeeseeesseeessnees 204
CommOoN areas Defore ProCESSING......cuuiiic ittt e e e e e rrae e s ba e e s baeesbaeessaeesnsneens 208
COMMON Areas AfEr PrOCESSING .. uiiecuiiiriiiiiritieiritee et e et e srteessrteessteesseeesssbeesssteesseeesssseesnssassssseesnnsens 209

xiii

xiv

Tables

B U] C=Y S {o Tl o1 o [T =1V o1 oo] =TS 12
2. z/OS system releases, their corresponding program management levels, and features added.............. 23
3. BIiNAEr DDINAMES ... ettt ettt ettt ettt sa et s e st e st e s bt et e s st et e sae e bt e atesbe e e e saeebe e st enbeemeesseeanes 37
4, SYSLIN data SEt DCB ParamEIerS......uuiiiiccieeeeeeciieeeeecitee e e ettt e s eeerteeeeestseeeeessseesesenssaeeassssseesssnsssssessnnes 38
5. SYSPRINT and SYSLOUT DCB ParamMEterS......uccccieeecrieeeeieeeeieeeeieeeeteesesteessssesssssesssssesssssssssssssssssesssssessnnes 39
6. SYSDEFSD DCB ParamElers...ciiieiiiiiiiecccciittitee e e e s e e s eeeccrrteeeeeeeeeesesees s nnsssaseeseeesesessessannssssanaaaeeseseesnsannnnnsns 41
7. INCLUDE and LIBRARY control statements DCB parameters.....cccceeccueeeeieeeciieeeeieeeeieeeeieeeeveeeevee e 42
8. Summary of processing and attribute OPTIONS.......cicciiiiciiice e 72
9. Binder data sets and their CONTENTS......coiiiiiriieee ettt s 147
10. APPPTRT dUMP QAT .uuetiiiiiiiiieceiiiie e eeeitee e eeecree e e e eeteeeeeeetteeeeeestaeeeesssaseesesssssesesssssasessessssaeesesssseesansses 152
1. Filelist diagnOStiC BNTIIES. ..uiiicieeeeiee et ecee ettt e e e e rtee e e e e e e teeeeteeesteeesasaessnsaeesnsaeesnsaesenseeesnseesnnes 155
12. Linkage editor capacities for minimal SIZE values (96KB, 6KB)......cccccceeeeerriiereeeieeeesee e 165
13. Batch loader virtual storage reqQUIrEMENTS......ccccuiiicieeecieeeeiee e e s e e e e e bae e e bee e e ree e e reeeenneas 167
14, LiNKAge €dIitOr FETUIM COUBS...uuiiiiiiiiiiiiiiiiercte st e srtee s ee s e s s sbee e s beeessbeeesbeeesbeeessbeeessseeessseeesnseeesnsens 172
15. BatCh L0Qder rETUIM COUES......uiiiiiiiieieeteteeet ettt ettt ettt s bt et e bt e ee s b e eesme e 173
16. IEWBLINK FETUIN COUES. ...eetiieuiietierieeieeeteectte st steeseesreesaeesabeesaeesaseesseesase e seesaneesseesuneeaseesasesaseessnesanes 189
17. IEWBLDGO FETUIN COUBS...cueiriiitirutetietenierte st et ete st st b et s bt et e sae e bt st e s bt e e e s st et e satesbe e e e sbesasesseeseeneen 190
18. Branch sequences fOr OVEIlay ProSramS. ... i ueeecieerirreeeireessreeessseeessseeessseeesssseesssssesssseesssssesssseessnseens 211
19. Use of the SEGLD MaCro INSTIUCTION...ccc.tritirirterieeierteieetest ettt se et ee st b e e b ee e eaees 212
20. Use of the SEGWT MacCro iNSTIUCTION...cc.ciiitierieriteete it ettt see st esiee s sbeesaee e reesaeesbeesaeesreesreesneenne 212

XV

Abo

ut this information

This book is intended to help you learn about and use the end user interfaces provided by the program
management component of z/OS. Program management helps you create and execute programs on z/0S.

I

BM® recommends that you use the program management binder to perform these functions. The linkage

editor and the batch loader are older components of program management that, while still supported by

I

BM, are no longer under development.

Chapters 1 through 5 of this book provide an overview of linking and editing and are recommended
reading for all users.

Chapter 6 provides options that give you more control over the binding process.
Chapter 7 provides reference material for the binder control statements.
Chapter 8 provides reference material for interpreting binder output.

Chapter 9 provides information about binder serviceability aids.

Appendix A contains information about using the linkage editor and batch loader.

Appendix B provides a summary of considerations when migrating from the Linkage Editor, load module
format, and the Prelinker to Binder and its program format.

Appendix C provides information about Binder Return Codes.
Appendix D contains information about Overlay Programs.

Appendix E contains information on accessibility features in z/OS.
Notices contains notices, programming information, and trademarks.

Required product knowledge

To use this book effectively in an MVS™ batch environment, you should be familiar with MVS job control
language.

Required publications

You should be familiar with the information presented in the following publications:

Publication title Order number

z/0S MVS JCL Reference SA23-1385

z/0S MVS JCL User's Guide SA23-1386
Related publications

The following publications might be helpful:

Publication title Order number

z/0S MVS Program Management: Advanced Facilities SA23-1392

z/0S DFSMS Using Data Sets SC23-6855

z/0S MVS Diagnosis: Reference GA32-0904
Referenced publications

Within the text, references are made to other z/OS books and books for related products. The titles and
order numbers are listed in the following table:

© Copyright IBM Corp. 1991, 2021 xvii

Publication title Order number

z/0S MVS Program Management: Advanced Facilities SA23-1392
z/0S DFSMSdfp Utilities SC23-6864
z/0S MVS Programming: Assembler Services Guide SA23-1368
z/0S MVS Programming: Authorized Assembler Services Guide SA23-1371
z/0S MVS Diagnosis: Tools and Service Aids GA32-0905
z/0S MVS JCL User's Guide SA23-1386
z/0S MVS System Messages, Vol 7 (IEB-IEE) SA38-0674
z/0S MVS System Messages, Vol 8 (IEF-IGD) SA38-0675
z/0S XL C/C++ Programming Guide SC14-7315
z/0S XL C/C++ User's Guide SC14-7307
z/0S UNIX System Services Command Reference SA23-2280

Notational conventions

A uniform notation describes the syntax of the control statements documented in this publication. This
notation is not part of the language; it is merely a way of describing the syntax of the statements. The
statement syntax definitions in this book use the following conventions:

Brackets enclose an optional entry. You can, but need not, include the entry. Examples are:
 [length]
« [MF=E]

A vertical bar separates alternative entries. When shown inside brackets, you can use one or none of
the entries separated by the bar. Examples are:

« [REREAD | LEAVE]
« [length | 'S']
{1

Braces enclose alternative entries. You must use one, and only one, of the entries. Examples are:
« BFTEK={S | A}

- 1K | D%

- jaddress | S | 0%

Sometimes alternative entries are shown in a vertical stack of braces. An example is:

MACRF={{ (R[C | P1)}
t(WEC | P | LI}
t(R[CT,WLC]) 33}

In the preceding example, you must choose only one entry from the vertical stack.

An ellipsis indicates that the entry immediately preceding the ellipsis can be repeated. For example:
« (dcbaddr, [(options)],. . .)

A ‘’indicates that a blank (an empty space) must be present before the next parameter.

xviii About this information

UPPERCASE BOLDFACE
Uppercase boldface type indicates entries that you must code exactly as shown. These entries
consist of keywords and the following punctuation symbols: commas, parentheses, and equal signs.
Examples are:
« CLOSE , , , ,TYPE=T
« MACRF=(PL,PTC)

UNDERSCORED UPPERCASE BOLDFACE

Underscored uppercase boldface type indicates the default used if you do not specify any of the
alternatives. Examples are:

« [EROPT=§ACC | SKP | ABE?}]
« [BFALN={F | D%]
Lowercase Italic

Lowercase italic type indicates a value to be supplied by you, the user, usually according to
specifications and limits described for each parameter. Examples are:

« number
- image-id
« count

z/0S information

This information explains how z/OS references information in other documents and on the web.

When possible, this information uses cross document links that go directly to the topic in reference using
shortened versions of the document title. For complete titles and order numbers of the documents for all
products that are part of z/0S, see z/0S Information Roadmap.

To find the complete z/0S library, go to IBM Documentation (www.ibm.com/docs/en/zos).

Additional information

You might also need the following information:

Short Title Used in This Document | Title Order Number
SNA Sync Point Services Systems Network Architecture Sync Point Services SC31-8134
Architecture Architecture Reference

About this information xix

https://www.ibm.com/docs/en/zos

xx z/0S: z/OS MVS Program Management: User's Guide and Reference

How to send your comments to IBM

We invite you to submit comments about the z/OS product documentation. Your valuable feedback helps
to ensure accurate and high-quality information.

Important: If your comment regards a technical question or problem, see instead “If you have a technical
problem” on page xxi.

Submit your feedback by using the appropriate method for your type of comment or question:

Feedback on z/0S function

If your comment or question is about z/0S itself, submit a request through the IBM RFE Community
(www.ibm.com/developerworks/rfe/).

Feedback on IBM Documentation function
If your comment or question is about the IBM Documentation functionality, for example search
capabilities or how to arrange the browser view, send a detailed email to IBM Documentation Support
at ibmdocs@us.ibm.com.

Feedback on the z/0S product documentation and content
If your comment is about the information that is provided in the z/OS product documentation library,
send a detailed email to mhvrcfs@us.ibm.com. We welcome any feedback that you have, including
comments on the clarity, accuracy, or completeness of the information.

To help us better process your submission, include the following information:

« Your name, company/university/institution name, and email address

« The following deliverable title and order number: z/OS MVS Program Management: User's Guide and
Reference, SA23-1393-50

« The section title of the specific information to which your comment relates
« The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive authority to use or distribute the
comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the
issues that you submit.

If you have a technical problem

If you have a technical problem or question, do not use the feedback methods that are provided for
sending documentation comments. Instead, take one or more of the following actions:

« Go to the IBM Support Portal (support.ibm.com).

« Contact your IBM service representative.
- Call IBM technical support.

© Copyright IBM Corp. 1991, 2021 XXi

http://www.ibm.com/developerworks/rfe/
http://www.ibm.com/developerworks/rfe/
mailto:ibmdocs@us.ibm.com
mailto:mhvrcfs@us.ibm.com
http://support.ibm.com

xxii z/0S: z/OS MVS Program Management: User's Guide and Reference

Summary of changes

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line to the left
of the change.

Note: IBM z/0S policy for the integration of service information into the z/OS product documentation
library is documented on the z/OS Internet Library under IBM z/OS Product Documentation

Update Policy (www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/ibm-zos-doc-update-policy?
OpenDocument).

Summary of changes for z/OS MVS Program Management: User's
Guide and Reference for Version 2 Release 5 (V2R5)

The following content is new, changed, or no longer included in V2R5.

New
The following content is new.

« None

Changed
The following content is changed.

« None

Deleted
The following content was deleted.

 The following topic was removed: "The Program Management transport utility"
« All references to IEWTPORT were removed.

Summary of changes in z/0S Version 2 Release 4 (V2R4)

The following changes are made to z/OS Version 2 Release 4 (V2R4).

New

Prior to January 2021 refresh
Examples were added to the CHANGE statement, see “Examples” on page 108.

Changed

2021 refresh

The description for the ORDER statement was changed. For more information, refer to “ORDER
statement” on page 122.

The syntax description for RMODEX was changed. For more information, refer to “RMODEX: Extended
residence mode option” on page 93

The description for the residence mode ANY option was changed, refer to “Residence mode” on page
30.

© Copyright IBM Corp. 1991, 2021 xxiii

https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/ibm-zos-doc-update-policy?OpenDocument
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/ibm-zos-doc-update-policy?OpenDocument
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/ibm-zos-doc-update-policy?OpenDocument

Prior to January 2021 refresh
The COMPAT option has been updated, see “Program object formats” on page 23 and “COMPAT:

Binder level option” on page 78 for more information.

Summary of changes in z/OS Version 2 Release 3 (V2R3)

The following changes are made to z/OS Version 2 Release 3 (V2R3).

New

The binder now supports RMODE64. The following topics contain new information for this support:

« Chapter 1, “Introduction,” on page 1

« Chapter 2, “Creating programs from source modules,” on page 11

Chapter 6, “Binder options reference,” on page 69

Chapter 7, “Binder control statement reference,” on page 101
« Appendix A, “Using the linkage editor and batch loader,” on page 157

xxiv z/0S: z/OS MVS Program Management: User's Guide and Reference

Introduction

Chapter 1. Introduction

z/0S provides program management services that let you create, load, modify, list, read, and copy
executable programs. With the program management binder, you can create executable modules in either
of two formats and store them (depending on the format) in PDS or PDSE libraries, or in z/OS UNIX files.
The two types of executable modules are load modules and program objects and may collectively be
referred to as 'program modules'. Of these two formats, program objects are the newer. Program objects
remove many of the restrictions of the load module format and support new functionality. You can use

the z/OS loader to load saved program modules into virtual memory for execution. You can also use the
program management binder to build and execute a program in virtual storage in a single step (with some
restrictions).

z/0S continues to support the older linkage editor and batch loader programs. However, the program
management binder is a functional replacement for these older programs and has many additional
enhancements. Because subsequent releases of z/OS might not support these components, IBM strongly
recommends you use the binder exclusively. In addition, the program management binder is a functional
replacement for the Language Environment® prelinker, although z/OS continues to support the use of the
prelinker as a separate intermediate step between compilation and binding for the relevant language
translators.

This topic contains an overview of the services provided by each program management component. It
also lists other z/OS programs that support program management tasks.

z/0S Program Management components

Although program management components provide many services, they are used primarily to convert
object modules into executable programs, store them in program libraries, and load them into virtual
storage for execution.

You can use the program management binder and program management loader to perform these tasks.
These components can also be used in conjunction with the linkage editor. A load module produced by

the linkage editor can be accepted as input by the binder or can be loaded into storage for execution

by the program management binder. The linkage editor can also process load modules produced by the
binder.

Figure 1 on page 2 shows how the program management components work together and how each one
is used to prepare an executable program.

© Copyright IBM Corp. 1991, 2021 1

Introduction

Source

modules

Assembler
or compiler
Object
modules
Program Linkage
manggement editor
binder

Program object
in

Load module
in
PDS
program library

PDSE

program library
or z/OS UNIX file

Program . Batch
management loader
loader
Program

in virtual storage
ready for execution

Figure 1. Using Program Management components to create and load programs

2 z/0S: z/0OS MVS Program Management: User's Guide and Reference

Introduction

The binder

The binder converts the output of language translators and compilers into an executable program unit
that can either be read directly into virtual storage for execution or stored in a program library.

Binding program modules
You can use the binder to:

- Convert object or load modules, or program objects, into a program object and store the program object
in a partitioned data set extended (PDSE) program library or in a z/OS UNIX file.

« Convert object or load modules, or program objects, into a load module and store the load module in
a partitioned data set (PDS) program library. This is equivalent to what the linkage editor can do with
object and load modules.

« Convert object or load modules, or program objects, into an executable program in virtual storage and
execute the program. This is equivalent to what the batch loader can do with object and load modules.

The binder processes object modules, load modules and program objects, link-editing or binding multiple
modules into a single load module or program object. Control statements specify how to combine the
input into one or more load modules or program objects with contiguous virtual storage addresses. Each
object module can be processed separately by the binder, so that only the modules that have been
modified need to be recompiled or reassembled. The binder can create programs to be loaded into
24-bit, 31-bit, or 64-bit address storage (for example, RMODE=24, RMODE=ANY (31) or RMODE=64)

and programs that execute in 24-bit, 31-bit, or 64-bit addressing mode (including support for 8-byte
address constants). The binder can also create overlay load modules or program objects (see Appendix D,
“Designing and specifying overlay programs,” on page 191). Programs can be stored in program libraries
and later brought into virtual storage by the program management loader.

The binder can also combine basic linking and loading services into a single job step. It can read object
modules, load modules and program objects from program libraries into virtual storage, relocate the
address constants, and pass control directly to the program upon completion. When invoked in this way,
the binder does not store any of its output in program libraries after preparing it for execution. Like the
batch loader, you can use the binder for high-performance loading of modules that do not need to be
stored in a program library.

Enhancements to the binder
The binder also provides the following enhancements compared to the linkage editor:

 Support for single and multi-segment program objects
« Support for object module format GOFF

Easing or elimination of many linkage editor restrictions

Application programming interface for binding programs
« Increased usability

Program objects

Depending on the library type specified by SYSLMOD, the binder creates either program objects or

load modules. Program objects include and extend the functions of load modules. They are stored in
partitioned data set extended (PDSE) program libraries or z/OS UNIX files instead of partitioned data set
program libraries and have fewer restrictions than load modules. For example, a program object can have
a text size of up to 1 gigabyte, whereas the text size of a load module is limited to 16 MB. The block

size of a program object is also fixed, eliminating the need to reblock when you copy programs between
devices. You can use IEBCOPY to convert between program objects and load modules, as described in
“Using utilities for Program Management” on page 5.

Program objects support an unlimited number of data classes, representing multiple text classes,
additional control information and user or compiler-specified data known as ADATA. Program text, the
instructions and data that constitute the executable portion of the module, can be divided into class

Chapter 1. Introduction 3

Introduction

segments, each of which can be loaded into separate storage locations. Associated Data (ADATA) is
information about the module that is created by the language translator but not required for linking,
loading, or execution. Virtually any type of data that is associated with a module or its constituent
sections can be saved in a program object. Some restrictions apply.

Object module support

The binder supports a modified extended object module (XOBJ) and an object module format called
generalized object file format (GOFF). Both XOBJ and GOFF support long names and reentrant C modules.
In addition, GOFF format supports multipart modules, ADATA, and XPLINK enabled code.

Additionally, the binder supports C reentrant modules, dynamic linking, and dynamic link libraries. All
object module formats can be stored as sequential files, as members of PDS or PDSE libraries or
members of z/OS UNIX archive libraries.

Fewer restrictions

The binder and program objects ease or eliminate many restrictions of the linkage editor and load
modules. The linkage editor limited aliases to 64 and external names to 32767. With the binder, the
number of aliases and external names for programs stored in a PDSE or z/OS UNIX file is limited only by
the space available to store them.

For program objects, external names (those entry points in one section that can be referenced from
another section or module or from the operating system) can be up to 32767 bytes in length. Long names
can be used for section names, external labels and references, pseudoregisters and common areas, and
(limited to 1024 bytes) aliases and alternate entry points for the module. Primary or member names are
still limited to eight bytes, however, as are member names appearing in JCL or system macros. For z/0OS
UNIX-resident program objects, z/OS UNIX name length restrictions apply.

Application Programming Interface

The binder also provides the ability for programs to invoke the binder and request services individually.
Binder services can be invoked directly, allowing your programs to access, update, and print the
contents of load modules and program objects. For specific information on using the binder application
programming interface, see z/0S MVS Program Management: Advanced Facilities.

Usability improvements

The binder provides other usability improvements over the linkage editor and batch loader. Messages
and diagnostics have been enhanced, producing diagnostic output that is more detailed and easier to
understand than the output of the linkage editor. Binder listings are also improved, printing out more
complete information about the run that produced a module, including enhancements to the module map
and cross reference table and a summary of the data sets used.

There have also been usability improvements (from the linkage editor) in the binder processing options
and attributes. A replaceable CSECT in the binder allows the system programmer to establish default
options and attributes for the system or installation. In addition, a SETOPT binder control statement
allows users to vary attributes by module when the binder is creating multiple load modules or program
objects.

The Program Management loader

The program management loader increases the services of the program fetch component by adding
support for loading program objects. The program management loader reads both program objects and
load modules into virtual storage and prepares them for execution. It relocates any address constants in
the program to point to the appropriate areas in virtual storage and supports 24-bit, 31-bit, and 64-bit
addressing ranges.

All program objects loaded from a PDSE are page-mapped into virtual storage. When loading program
objects from a PDSE, the loader selects a loading mode based on the module characteristics and
parameters specified to the binder when you created the program object. You can influence the mode

4 z/0S: z/OS MVS Program Management: User's Guide and Reference

Introduction

with the binder FETCHOPT parameter. The FETCHOPT parameter allows you to select whether the
program is completely preloaded and relocated before execution, or whether pages of the program can be
read into virtual storage and relocated only when they are referenced during execution. (See “FETCHOPT:
Fetching mode option” on page 84 for more information on the FETCHOPT parameter.) z/OS UNIX

System Services are called to load a program object from a z/OS UNIX file.

The linkage editor

The linkage editor is a processing program that accepts object modules, load modules, control
statements, and options as input. It combines these modules, according to the requirements defined

by the control statements and options, into a single output load module that can be stored in a partitioned
data set program library and loaded into storage for execution by the program management loader. The
linkage editor also provides other processing and service facilities, including creating overlay programs,
aiding program modification, and building and editing system libraries. It supports addressing and
residence mode attributes in both 24- and 31-bit addressing ranges. It does not support program objects
or the (GOFF) object format.

All of the services of the linkage editor can be performed by the binder.

The batch loader

The batch loader combines the basic editing and loading services (that can also be provided by the
linkage editor and program fetch) into one job step. The batch loader accepts object modules and load
modules, and loads them into virtual storage for execution. Unlike the binder and linkage editor, the
batch loader does not produce load modules that can be stored in program libraries. The batch loader
prepares the executable program in storage and passes control to it directly. The batch loader cannot
accept program objects, GOFF object modules, or control statements as input.

The batch loader provides high performance link-loading of programs that require only basic linking and
loading, and can be used if the program only requires listing control or other processing options. Because
of its limited options and ability to process a job in one job step, the batch loader only requires about half
the combined linking and loading time of the linkage editor and program fetch.

Batch loader processing is performed in a load step, which is equivalent to the link-edit and go steps of
the binder or linkage editor. The batch loader can be used for both compile-load and load jobs. It can
include modules from a call library (SYSLIB), the link pack area (LPA), or both. The batch loader resolves
external references between program modules and deletes duplicate copies of program modules. It also
relocates all address constants so that control can be passed directly to the assigned entry point in virtual
storage.

Like the other program management components, the batch loader supports addressing and residence
mode attributes in 24-bit and 31-bit bit addressing ranges. The batch loader program is reenterable and
therefore can reside in the resident link pack area.

Except for the processing of in-storage object modules, all of the services of the batch loader can be
performed by the binder.

Using utilities for Program Management

z/0OS provides utility programs to help you manipulate data and data sets. The IEBCOPY, IEHPROGM,
and IEHLIST utilities can be used to support program management tasks as described in this section.
Information on using these utilities is found in z/0S DFSMSdfp Utilities.

z/0S UNIX System Services commands cp and mv and TSO commands OGET and OPUT can be used to
convert between program modules in a PDS or PDSE and program objects in a z/OS UNIX file system. See
z/0S UNIX System Services Command Reference for more information.

IEBCOPY

You can use the IEBCOPY utility program to copy a program module from one program library to another.
IEBCOPY can also perform conversions between load modules and program objects. IEBCOPY can be

Chapter 1. Introduction 5

Introduction

used to copy a program module from a partitioned data set program library to a PDSE program library.
IEBCOPY converts the new copy into the format appropriate for the target program library. However, you
cannot convert a program object into a load module and store it in a partitioned data set library if the
program object exceeds the limitations of load modules (for example, if its length is greater than 16 MB).

The control statement, COPYGRP, allows you to copy a program library member (load module or program
object) and all of its aliases, specifying only a single name. Since member and alias names are still limited
to eight bytes in IEBCOPY control statements, COPYGRP is required for copying members with long alias

names.

You can also use the IEBCOPY utility to alter relocation dictionary (RLD) counts of load modules in place,
and to reblock load modules. You do not need to alter RLD counts for program objects, or use the
COPYMOD control statement to change the block size of a program object library. The COPYMOD control
statement reblocks load modules to a block size best suited for the target device, reducing the time it
takes to load a program into virtual storage.

IEHPROGM

You can use the IEHPROGM utility or TSO commands to delete or rename load modules, program objects,
or their aliases. If the primary name of a PDSE member is deleted or replaced, the associated aliases are
deleted automatically. If the primary name of a PDS member is deleted or replaced, the aliases are not
deleted automatically and continue to point to the original member. Aliases for a deleted load module
remain unless you specifically delete or replace them.

IEHLIST

You can use the IEHLIST utility or TSO commands to list entries in the directory of one or more partitioned
data sets or PDSE program libraries. IEHLIST can list up to ten partitioned data sets or PDSE directories at
a time in an edited or unedited format.

Using service aids for Program Management

Service aids are programs designed to help you diagnose and repair failures in system or application
programs. The AMBLIST and AMASPZAP service aids can be used to perform some program management
tasks. Both AMBLIST and AMASPZAP support program objects, long names up to 1024 bytes, and
multiple text classes. For details on using these programs, see z/0S MVS Diagnosis: Tools and Service
Aids.

z/0S MVS Diagnosis: Reference contains additional diagnostic information.

AMBLIST
The AMBLIST service aid prints formatted listings of modules to aid in problem diagnosis.
AMBLIST can be used to provide listings showing:

1. The attributes of program modules

2. The contents of the various classes of data contained in a program module, including SYM records, IDR
records, external symbols (ESD entries), text, relocation entries (RLD entries), and ADATA

3. A module map or cross reference for a program module
4. The aliases of a program module, including the attributes of the aliases.

Listings of the modified link pack area (MLPA), fixed link pack area (FLPA), pageable link pack area (PLPA),
and their extended areas in virtual storage can be printed together or separately.

AMASPZAP

The AMASPZAP service aid, also called SPZAP or Superzap, dynamically updates or dumps programs
and data sets. You can use AMASPZAP to inspect and modify instructions or data in any load module or
program object in a program library, to dump a load module or program object in a program library, or

6 z/0S: z/0OS MVS Program Management: User's Guide and Reference

Introduction

to update the system status index in the directory entry for any load module or program object. Load
modules can be updated in place; when a program object is updated using AMASPZAP, a new copy of the
program object is created.

Program objects: Features and processing characteristics

Program objects remove many of the limitations and restrictions inherent in the old load module format.
Following are some of the key features of program objects, as well as considerations for their use.

Program object structure

Program objects have the following structural features:

Program object design allows for the removal or increase of most size restrictions, including maximum
text size (now 1 gigabyte) and number of control sections (now unlimited).

Because program objects never have to reside in a PDS, they can take advantage of PDSE library
technology and its many advantages."

The program object structure is generalized and extendable. It will continue to change as required to
support new functions.

Program objects support long names (up to 32767 bytes).

Program objects contain many of the same enhancements supported in the Generalized Object File
Format (GOFF), which is now being generated by the High Level Assembler and a number of high level
languages (as well as the Binder itself). This includes support for C/C++ writeable static.

Program objects contain multiple classes of text, distinguished by attributes that control binding and
loading characteristics and behavior. Classes are central to C and DLL support.

— There are two types of classes: text (byte-stream) and nontext (record-like, IDR, ADATA)
— The separate attributes assigned to each class include:

- LOAD: the class is brought into memory at the time the module is loaded

- DEFERRED LOAD: The class is prepared for loading, but not instantiated until requested. (Deferred
classes are most frequently used by LE for loading multiple dynamically modifiable copies of data.)

- NOLOAD: The class is not loaded with the program, for example, it is nontext.
- RMODE 24/ANY/64: Indicates placement of segments within virtual storage.

— A section is the smallest unit that can be manipulated by users (replaced, deleted, ordered). The
contribution to a class from a section is called an element; a section may contribute elements to more
than one class. Elements (other than parts) may contain entry points.

— Classes are bound into independently loadable segments. A segment contains classes with
compatible attributes. A program object can have multiple segments.

— The loading characteristics of the class (and segment) determine the placement of the segment in
virtual storage. Multisegment program objects can be loaded into noncontiguous areas of virtual
storage, for example, when bound with the RMODE(SPLIT) option.

— Program objects contain a class of data specifically intended for users to save associated or
application data (ADATA). It is not loadable (NOLOAD). This data can be source statements,
debugging tables, user information, history data, and documentation. It is accessible via the binder
Application Programming Interface defined in z/0S MVS Program Management: Advanced Facilities.

Program objects on DASD storage

Unlike the load module, whose format is documented and universally available, the format of the
program object is NOT externalized. The binder API should be used to access program data.

Consistent with all data in PDSEs, program objects are organized in 4KB blocks, making them accessible
by both the binder and loader via DIV (Data in Virtual) access mechanisms. The minimum length of a
program object is 4KB.

Chapter 1. Introduction 7

Introduction

When saving a program object in PM1 format, all uninitialized text in a program object (for example,
DS space in a program) is written to DASD as binary zeros. DS space is not written to DASD for later
program object formats.

Program objects cannot be in scatter-load format.

IEBCOPY load/unload functions will process program objects with NO change to the format, that is, it
remains the same as it is on DASD.

Residence for and access to program objects

The following describes the program object access modifications and restrictions:

The program object can be accessed for input using the SAM access method, though this is not
recommended. While 4KB blocks will be presented to the user, no description of these blocks will

be available. (This access is provided primarily for browse and compare services, where there is no need
to interrogate or understand the format of the data.)

No user can access a PDSE program library directly for output. This function is reserved exclusively for
the binder. Services that perform output functions, for example, AMASPZAP, must invoke the binder.
Applications can use the binder API to put data into a program object.

Program objects must reside in either PDSEs or z/OS UNIX files. Data members and program objects
may NOT reside in the same PDSE. The PDSE type is determined by the data type on issuance of the
first STOW into an empty PDSE.

There are no “dangling aliases” for program objects in PDSEs. When the primary member name is
deleted or replaced, the old aliases are deleted automatically.

The DCB RECFM field for PDSE program libraries must be specified the same as it is now for PDS
program libraries, for example, RECFM=U (undefined record format). While this has no meaning in terms
of the actual program object record format, traditionally it has helped to identify program libraries.

To promote transparency and usability, this record format will continue to be required as one of the
program library indicators for PDSEs as well as PDS's.

Extensions to the PM loader to support program objects

Most of the loading functions are transparent to the user. The loader will know whether the program being
loaded is a load module or a program object by the source data set type. If the program is being loaded
from a PDS, it calls IEWFETCH (now integrated as part of the loader) to do what it has always done. If

the program is being loaded from a PDSE, a new routine is called to bring in the program using DIV. The
loading is done using special loading techniques that can be influenced by externalized options.

Page mode loading

Program objects can be loaded in Page Mode.

This mode is the default, unless any of the conditions described below under Move Mode exist. Program
objects are mapped into virtual storage. If the program object is less than 96K the whole program is
preloaded. When over 96K the first 16 pages are preloaded; additional pages are brought in during
execution as they are referenced.

Program objects can be cached in the PDSE hiperspace cache, so frequently referenced pages will be
found in cache.

When the entire module is read in and relocated before execution begins, it is referred to as Immediate
Mode, a subset of Page Mode.

An option, FETCHOPT=PRIME, allows you to specify explicitly that the module should be completely
relocated before execution. This option only affects Page Mode and forces Immediate Mode. It has the
benefit that the loader can immediately release all storage resources that would otherwise be used to
contain loader control information (and would usually be held until the module is deleted). It has the
disadvantage of bringing in the entire module when it might not be necessary.

Note: Page mode loading is not supported for program objects loaded from z/OS UNIX files.

8 z/0S: z/0S MVS Program Management: User's Guide and Reference

Introduction

Move mode loading

Program objects can also be loaded in Move Mode from either a PDSE or z/OS UNIX file. This mode is
used in those cases where page alignment of virtual storage can not be guaranteed. The entire program is
always loaded and relocated before execution. The loader uses Move Mode when:

« Adirected load has been requested (for example, the virtual storage address was passed on the LOAD
SVC).

- FETCHOPT=PACK was specified at Bind time, forcing Move Mode by requesting that program objects be
packed together in virtual storage rather than each be aligned on a page boundary.

« The program object is in overlay format.
« The job step is running V=R.

LLA and checkpoint/restart support for program objects

« LLA (Library Lookaside) supports both the caching of PDSE program directories and the caching of
program objects (loaded from PDSEs), using the same caching algorithms as for load modules. The
interfaces to enable LLA are the same as they are today for load modules.

« Programs can be Checkpointed and Restarted with program objects in the address space if the PDSE
is not open under the user's TCB, (for example, it is OK if PDSEs are JOBLIB, STEPLIB or Linklist). In
addition, there must be no overlay program objects in the address space when a Checkpoint is issued.

Chapter 1. Introduction 9

Introduction

10 z/0S: z/OS MVS Program Management: User's Guide and Reference

Creating programs from source modules

Chapter 2. Creating programs from source modules

Program management components process the output of language translators and compilers to produce
an executable program unit.

A program can be divided into logical units that perform specific functions. Each of these logical units

of code is a module. Each module can be written in the symbolic language that best suits its particular
function, for example, assembler, C, C++, COBOL, Fortran, or PL/I. Many modules can be bound or
link-edited into a single executable program unit. Object modules produced by several different language
translators can be merged to form a single program.

Note: This topic refers to binder processing and output. These concepts apply equally to linkage editor
and batch loader processing unless otherwise noted in Appendix A, “Using the linkage editor and batch
loader,” on page 157. The linkage editor and batch loader cannot process program objects, extended
object modules, or GOFF object modules.

Combining modules

Each module of symbolic language code is first assembled or compiled by one of the language translators.
The input to a language translator is a source module. The output from a language translator is an object
module. Object modules are relocatable modules of machine code that are not executable, and have one
of several formats:

« Traditional object modules (OBJ) produced by most IBM language products and accepted by the binder,
linkage editor, and batch loader.

« Extended object modules (XOBJ), for instance those processed by COBOL and C/C++ compilers, are
accepted by the Language Environment prelinker. The binder also accepts XOBJ object files, eliminating
the need for the Language Environment prelinker.

» Generalized Object File Format (GOFF) object modules, for example those created by the High Level

Assembler and the IBM C/C++ compilers, are accepted only by the binder. GOFF supports long external
names up to 32767 bytes, multiple text classes, and embedded ADATA.

Before an object module can be executed, it must be processed by a program management component
into executable machine code. The batch loader and the binder can produce executable code directly
in virtual storage that executes and is then discarded. The binder and the linkage editor can produce
executable code that can be stored in a program library. The binder can produce:

« A program object stored in a partitioned data set extended (PDSE) program library

« A program object stored in a z/OS UNIX System Services (z/OS UNIX) file

« A load module stored in a partitioned data set (PDS) program library.
The linkage editor can only produce load modules stored in a PDS.

You can also use the IEBCOPY utility to convert load modules in a PDS into program objects in a PDSE, or
program objects in a PDSE into load modules in a PDS. See “Using utilities for Program Management” on
page b.

Unix System Services commands c¢p and mv and TSO commands OGET and OPUT can be used to convert
between program modules in a PDS or PDSE and program objects in a z/OS UNIX file system. See z/0S
UNIX System Services Command Reference for more information.

Program objects and load modules are units of executable machine code in a format that can be loaded
into virtual storage and relocated by the program management loader. Collectively, program objects
and load modules are referred to as program modules. The PDSE and PDS data sets they reside in
respectively, are referred to as program libraries.

© Copyright IBM Corp. 1991, 2021 11

Creating programs from source modules

Figure 2 on page 12 shows the steps required to create an executable program from source modules.

The binder API allows you to control specific binding operations. See z/0S MVS Program Management:
Advanced Facilities for more information about the binder APL.

Language
Translator

Program
Managemert
Binder

Program
Modules

+

Program
Management

Loader

v

Executable
Program

Figure 2. Preparing source modules for execution and executing the program

Symbols

Table 1 on page 12 summarizes the types of binder symbols you can define, their length, and applicable

usage notes.

Table 1. Rules for binder symbols

and PO3

Maximum
Symbol type Length (in bytes) | Additional information
External symbol in PDS 8 Prelinker can be used to create truncated names
External symbolin PO1 64 Longer names cause automatic promotion to a higher
level unless restricted by the COMPAT option
External symbol in PO2 1024 Longer names cause automatic promotion to PO4 unless

restricted by the COMPAT option

External symbolin PO4+ (32767

Section name

Same as the other external symbols defined above

Class name 16 User-defined names should not exceed 14 bytes, and
must not begin with B_ or C_

Member name 8 Should be upper case alphanumeric. Does not apply to
UNIX files Binder allows 1024 for PDSE but will generate
an 8 byte member name for system use if user-defined
name exceeds 8 characters.

UNIX program name 255 Primary or alternate names. Includes file extension, if
any, but not path

Alias name in PDS 8 Should be upper case alphanumeric.

Alias name in PDSE 1024 64 in PO1

DDname 8 Upper case alphanumeric.

12 z/0S: z/OS MVS Program Management: User's Guide and Reference

Creating programs from source modules

Table 1. Rules for binder symbols (continued)

Maximum
Symbol type Length (in bytes) | Additional information
Data set name 44 Upper case alphanumeric plus periods.
Path name 1023 Must begin with / (for absolute path) or ./ (for relative
path)

Note:

1. Names must be composed of charactars with EBCDIC representations from X'41' through X'FE' except
that Shift-in and Shift-out (X'OE' and X'OF') may be used to signal DBCS character ranges. This
character set restriction means that blanks may not be used within names, but any punctuation or
national use characters may be except for those noted above as being alphanumeric.

2. The binder treats upper and lower case letters as distinct with three exceptions:

a. Keywords in binder options, and binder commands, are converted to upper case.

b. If the CASE=MIXED option is not specified, lower case letters in control statement operand values
and option values are converted to upper case unless they are within single quotation marks.
Since options are processed in order of appearance, option data appearing prior to a CASE=MIXED
specification will be folded to uppercase.

c. If the UPCASE option is specified, certain symbols left unresolved at the end of a bind are converted
to uppercase for a final resolution attempt.

Sections

Every module is composed of one or more sections. A section is a named collection of program object
components, called elements, that you can manipulate (for example, order or delete) by that section
name during binding. Such manipulation does not affect the integrity of the containing module. The
section is a generalization of the traditional object module control section (CSECT) concept.

Sections consist of one or more elements, each representing a separate class of data. An element does
not have a name and cannot be specified on binder control statements. All elements of a section are
edited as a unit. If a section is replaced, ordered or aligned, all of its elements are replaced, ordered or
aligned. The element represents the cross section of module data identified by a section name and class
name.

Classes

Every module is composed of multiple classes, each with its own function and format. Some classes
represent program text, the instructions and data that are loaded into virtual storage during execution.
Other classes, such as an external symbol dictionary (ESD) and a relocation dictionary (RLD), are required
for binding and loading the program. Additional classes, such as IDR and ADATA, provide descriptive
information about the program module or its individual sections and are of use primarily for maintenance
and debugging.

Like sections, classes consist of elements. An element is defined by a class name and a section name.
Figure 3 on page 14 illustrates a section/class/element structure.

Chapter 2. Creating programs from source modules 13

Creating programs from source modules

Class X Class Y ClassZ

Section A Element | Element | Bement

Section B Element | Element Bement

Figure 3. Section/class/element/structure

See “Object and program module structure” on page 16 for the logical structure of elements appearing
as one or more classes in a module.

Each element in the class represents the contribution of a single section to that class. The sequence of
elements within the class is the same as the sequence of the sections within the module, specified on
either the ORDER control statement or the ORDERS API function.

Classes are identified by class name. Unlike section names, which are assigned by the source language
programmer, class names are normally assigned by an IBM compiler or binder. Class names are a
maximum of 16 bytes in length. Binder-defined class names begin with “B_". Compiler-defined class
names begin with “C_". User-defined class names should not use these prefixes and should be no more
than 14 characters long. Class names are not normally required on binder control statements, but can
appear in listings and diagnostics. Each separately named class has a specified or an implied set of
binding and loading attributes.

Note: The class concept is new with the binder, although several fixed classes (ESD, RLD, TEXT, IDR and
SYM) were implicit in the old binding products.

Common areas

A common area is a data-only section that can be shared by multiple sections within the module.
Common areas can have a name, and if unnamed a name consisting of a single blank will be assumed.
The only supported text class for common areas is B_TEXT. If no identically-named CSECT is present, the
storage allocated to the COMMON is determined by the longest COMMON definition.

Common areas provide shared space in the module text for data, not instructions. Common areas cannot
have initial data values; however, if both a section (CSECT) and common area of the same name are
present in the module, the CSECT will initialize the COMMON area. Note that such a CSECT must be at
least as long as the longest COMMON definition.

Common areas are normally located at the end (highest virtual address) of the module, but can be
relocated by specifying the common area name in the ORDER control statement. When creating a module
in overlay format, if a common area is referenced by sections in different paths then it will be moved to a
segment higher in the structure (closer to the root segment) that is common to both paths.

Parts

Certain text classes can be further subdivided into parts. Like common areas, named parts can be
shared between sections and are defined with the longest length and most restrictive alignment of
all contributing sections. Unlike common areas, they must be defined in classes other than B_TEXT.
Initializing data in parts is supported for PO3 and later format program objects.

Parts and common areas cannot share the same storage. While both sharing methods can coexist in the
same program module, a single shared data area must use one or the other. Older compilers will continue
to use common areas for data sharing, whereas newer compilers will utilize parts.

Note: Parts are not supported by either the linkage editor or batch loader programs.

14 z/0S: z/OS MVS Program Management: User's Guide and Reference

Creating programs from source modules

Pseudoregisters

External Dummy Sections, also called pseudoregisters, are varying sized units of program storage that

do not occupy space in the load module or program object. External Dummy Sections are defined by
compilers, or by the assembler using the DXD instruction, and are shared among all sections in the
module in the same way that common areas are shared. The attributes of the single, mapped area
represents the cumulative length obtained by assigning each pseudoregister's longest length and most
restrictive alignment from all its definitions. Virtual storage for the pseudoregister(s) is not provided

in the program module, but is instead obtained during execution, using the aggregate length of all
pseudoregisters provided by the linker. The concatenation of all uniquely named pseudoregisters is called
the pseudoregister vector.

All of the linking products (linkage editor, batch loader, and binder) support pseudoregisters, although

the implementations are different. The linkage editor and batch loader process pseudoregisters separate
from the other program elements and identify them differently in messages and listings. The binder treats
pseudoregisters as parts in a “noload” class, B_PRV, and displays the PRV as it would any other class. As a
result, there is no separate “Pseudoregister” section in the binder map.

Note: PRV contents are displayed as text class B_PRV. Even though B_PRV is listed as a text class, no text
is ever placed in B_PRV by the binder.

Entry points

An entry point in a program module is a location that is known by name to the operating system and which
can be referenced by or receive control from another module. In PDS and PDSE libraries entry points are
represented by directory entries; entry points in z/OS UNIX files are each represented by a file name in
the z/OS UNIX directory structure.

There are five types of entry points in program modules:

« Primary entry point. This is the point that receives control when the module is invoked by its primary,
or member, name. The primary name is the name that was specified on the NAME control statement or
the SYSLMOD dd-statement when the module was created.

- Alternate entry point. Alternate entry points are locations, other than the primary entry, which can
receive control or be referenced from another module. An alternate entry point is defined during binding
by use of an ALIAS control statement (or ADDAlias API function) that specifies the name of an external
label in the program.

 True alias. A true alias is another name associated with the primary entry point. It is also defined with
an ALIAS control statement, but is not an external label in the module.

« Alternate primary. MVS places certain restrictions on the lengths of member names and aliases. If you
specify a name on the NAME control statement that exceeds the 8-byte limitation for member names,
the binder will generate an 8-byte primary name and store the specified name as a true alias. This
alias is referred to as the alternate primary and flagged in the directory entry. The primary entry is also
referred to as the generated primary.

The linkage editor does not support alternate primaries or any entry point name longer than eight bytes.

The way entry points are represented in the system depends on the type of file in which the module is
stored:

« PDSE program libraries support all of the entry point types listed above as directory entries. The primary
or generated primary name becomes the member name and is limited to eight bytes. Alternate entry
points, true aliases and the alternate primary are stored as aliases and are limited in length to 1024
bytes.

- Partitioned data set (PDS) program libraries support primary entry point, alternate entry point and true
alias names up to a maximum of eight bytes. The primary entry point appears as the primary directory
entry; aliases and alternate entry points appear as alias directory entries. Alternate primaries are not
supported in a PDS.

« z/OS UNIX-resident program objects can contain primary names and true aliases only. All names are
limited to 255 bytes, not including the path name. Alternate entry points and alternate primary entry

Chapter 2. Creating programs from source modules 15

Creating programs from source modules

points are not supported. As far as UNIX System Services is concerned, there is no difference between
primary names and alias names.

External symbols

Sections can contain symbolic references to locations defined in the same or other sections. These
references are called external references. External references are normally made by using an address
constant (adcon). For program objects, the binder supports adcons that are three, four, and eight bytes
in length. A symbol referred to by an external reference must be an external name, the name of an entry
point, or the name of a pseudoregister. In modules containing only a single text class, the section (CSECT
or common area) hame is an implied entry point.

By matching an external reference with an external definition (sometimes called an ‘external label’), the
binder resolves references between sections. External references and external labels are called external
symbols. External symbols are defined in one section and can be referred to in the same section, or from
other sections.

Note the following for using relative immediate references:

- Two-byte relative immediate references are supported within a segment, but are not supported across
separate segments.

« Four-byte relative immediate references are supported except if either segment is RMODE 64.

Figure 4 on page 16 shows how external symbols provide connections between modules.

Object Program Wodule
Module A Object AB
Section A Section A
CALL B CALLB
Section C
' Program SectionC
_ Management —» '
ENTRY C1 Binder .
A ENTRY C1
- Object Section B
External Names: NModule B |.0n
External Sec'gon EntryANarre Secti_on B .
Symbols B B CALL C1
C C)
| C C1 CALL C1

External References:

From Ato B
From Bto C1

Figure 4. External names and external references

Object and program module structure

Object modules, load modules, and program objects share the same logical structure consisting of:

16 z/0S: z/OS MVS Program Management: User's Guide and Reference

Creating programs from source modules

« Control dictionaries, containing information to resolve symbolic cross-references between sections
and to relocate address constants. When a language translator converts source modules into object
modaules, it generates a control dictionary entry whenever it processes an external symbol, address
constant, or section. Most language translators produce two kinds of control dictionaries: an external
symbol dictionary (ESD) and a relocation dictionary (RLD).

« Text, containing the instructions and data of the program.
- Identification (IDR) data, containing program control and user-provided information about the modules.
« Associated data (ADATA) for various uses.

Each of these structural elements appears as one or more classes in the module.

A description of the external symbol and relocation dictionaries follows.

External symbol dictionary

The external symbol dictionary (ESD) contains one entry for each external symbol defined or referred
to within a module. The dictionary contains an entry for each external reference, entry name, named
or unnamed control section, class, blank or named common area, and part or pseudoregister (external
dummy section). An entry name or named control section can be referred to by any control section or
separately processed module. An unnamed control section cannot be referred to in this way.

Each entry identifies a symbol or a symbolic reference and gives its location within the module. Each entry
in the ESD is classified as one of the following;:

External reference
Symbol referenced in the module being processed that is defined as an external name in another
separately processed module. The ESD entry specifies the symbol; the location is unknown.

Weak external reference*
External reference that is not resolved by automatic library calls unless an ordinary external reference
to the same symbol is found. The ESD entry specifies the symbol; the location is unknown.

External label definition
Name that defines an entry point within a section. For load modules and traditional (OBJ and XOBJ)
object modules, an entry point defines an offset within a control section. For program objects and
GOFF modules, an entry point defines an offset within an element (and each element is owned by
a section). A control section or element may have multiple entry points. The ESD entry specifies the
symbol, its location, the addressing mode, and identifies the section or element containing the entry
point.

Section definition
In load modules and CSECTs, the symbolic name of a control section. The ESD entry specifies the
symbol, the length of the control section, and its location as an offset within the module or program
object segment in which the section appears. The location represents the origin, or the first byte, of
the control section. This ESD entry also specifies the CSECT addressing mode and residence mode.

In Program Objects, a section is the symbolic name of a collection of elements assigned to one or
more classes.

Private code*
Unnamed section. The ESD entry specifies the section length, origin, and can also specify the
addressing mode and residence mode of the CSECT. The name field contains blanks.

Blank or named common area*
A section used to reserve a virtual storage area that can be referenced by other modules. The ESD
entry specifies the name and length of the area. If there is no name, the name field contains blanks.

Part reference
A reference to a named subdivision of module text that can be shared between referencing sections.
Parts might or might not occupy space in the loaded module.

Pseudoregister*
A facility (corresponding to the external dummy section feature of High Level Assembler) that can be
used to write reenterable programs. A pseudoregister is part of a dynamically acquired storage area

Chapter 2. Creating programs from source modules 17

Creating programs from source modules

called a pseudoregister vector. The pseudoregister can be of any size or data type. The space for such
areas is not reserved in the program module but is acquired during execution. The ESD entry contains
the name, length, alignment, and displacement of the pseudoregister.

Element definition
Symbolic name of a class. The ESD entry specifies the attributes of the class. Element definition is
supported by GOFF and program objects only.

Note:

The binder requires fewer ESD record types than the linkage editor. Symbol types followed by an asterisk
represent variations of the preceding type as they appear in binder listings, GOFF modules, and program
objects.

Relocation dictionary

The relocation dictionary (RLD) contains an entry for each address constant that must be modified before
a module is executed or requires adjustment during the binding process. The entry specifies both the
address constant location within a section and the external symbol used to compute the value of the
address constant. (The external symbol can be defined in an ESD entry in another section.)

The binder uses the RLD to adjust (relocate) the address constants for references to other control
sections or elements. The RLD is also used to readjust these address constants after the program
management loader reads a program object or load module from a program library into virtual storage for
execution.

An RLD entry can be one of the following types:

A-con
Non-branch RLD type; in assembler language, DC A(name). The corresponding address constant may
contain an offset. A-con's are normally used for branching within a section or for addressing data.

Class address
This type of RLD is supported for PO2 and later format program objects. See “Program object formats”
on page 23 for additional information.

Class length
The length of the pseudoregister vector is supported in assembler language by the CXD instruction.
In program objects, the length of any class in assembler language uses DC J(classname). For other
text classes this RLD type is supported for PO2 and later format program objects. See “Program object
formats” on page 23 for additional information.

Individual PR length
The length of the individual PR is supported in assembler language by the DXD instruction. In program
object, the length of individual PR in assembler language uses DC J(myDXD), DC J(myDSECT) or DC
J(myPart).

Loader token
An 8-byte constant which uniquely identifies a specific execution instance of the program (PO3 and
later program objects).

Q-con
Q-con type is an offset of the designated symbol from the start of its containing class. In assembler, it
is coded as DC Q(name). Q-cons are not relocated during loading. Q-cons designating offsets in class
B_PRV are supported for all format modules. For other classes, they are supported for PO2 and later
format program objects. See “Program object formats” on page 23 for additional information.

QY-con
QY-con type is an assembler notation that supports long-displacement type instructions in which
the displacement is held in discontiguous bytes (DL-DH). This support is provided in the ZOSV1R10
variant of the PO5 format and later formats. See “Program object formats” on page 23 for additional
information.

18 z/0S: z/OS MVS Program Management: User's Guide and Reference

Creating programs from source modules

R-con
R-con type is the address of the environment or associated data for a symbol. R-con is supported for
program objects in PO3 and later formats. See “Program object formats” on page 23 for additional
information.

RI-con
RI-con type is an instruction address relative halfword or fullword offset for use with relative-
immediate instructions. This support is provided in the ZOSV1R7 variant of the PO4 format and later
formats. See “Program object formats” on page 23 for additional information.

V-con
V-con is a branch type; in assembler language, DC V(name). V-con's are normally used for branching
out of the control section.

Text

Text contains the instructions and the data belonging to the module. The multiclass capability of the
binder allows for more than one text class, each of which is loaded into separate storage areas.

Identification data

Identification (IDR) data contains information about the module. The IDR data is not used during program
loading and execution. A listing of the IDR data for a module can be obtained by executing the AMBLIST
utility.

1. Link-edit or bind identification (IDRB)

IDRB data identifies the component that created the program module. IDRB data is associated with
the entire module never in individual sections.

2. Translator identification data (IDRL)
IDRL data is produced by the language translator and identifies the compiler or assembler that
produced the module or section and the date of compilation.

3. Zap identification data (IDRZ)

IDRZ data is created by AMASPZAP when it is executed against program modules. It contains a
maintenance identifier (such as PTF number) and the date that the maintenance was applied.

4. User identification data (IDRU)
IDRU data is provided by the user on the IDENTIFY control statement for a program module. It

can contain any information pertinent to the associated section. It is created at bind time using the
IDENTIFY control statement. See “IDENTIFY statement” on page 111 for more information.

Module attributes

The module attributes include the module entry point designation, module reusability,and the module
addressing and residence modes. The primary entry point designation is stored in the END record of an
object module. Module attributes for load modules are stored in the directory entry for the partitioned
data set member. Module attributes for program objects are stored in the PDSE directory entry and
embedded within the program object.

Binder batch processing

This section describes the input and output of the binder and how the binder produces a program object
or load module in batch mode.

Input and output
The binder accepts four major types of input:
1. Primary input defined by the SYSLIN DD statement.

Chapter 2. Creating programs from source modules 19

Creating programs from source modules

2. Additional input specified with the INCLUDE control statement

3. Additional input incorporated by the program management binder from a call library. This input can
contain object modules and control statements, load modules, or program objects.

4. Additional input specified as options in the PARM field of the JCL EXEC statement.
Output of the program management binder is of the following types:

1. A program module placed in a program library as a named member, or a program object placed in a
z/OS UNIX file. Program objects are stored in PDSE program libraries or z/OS UNIX files. Load modules
are stored in partitioned data set program libraries.

2. An executable module loaded into virtual storage.
3. Diagnostic and informational output produced as a sequential data set.

Figure 5 on page 20 shows how object modules are combined to create a load module.

:::_I”Ttary Program
P Module in
Program
» Library
or HFS
File
h 4
Automatic Program Executable
Call Management———®» Program in
Library Binder Virtua
Storage
Ly Diagnostic
Qutput
User-Specified
Input

Figure 5. Input and output for the binder

Creating a program module

A program module is composed of all input object modules and program modules processed by the
binder or linkage editor. The resultant control dictionaries are collections of all the control dictionaries

in the input modules. For load modules, the control dictionaries are merged into a single composite
external symbol dictionary (CESD) and a single relocation dictionary (RLD). For program objects, the
control dictionaries are retained individually. Figure 6 on page 21 shows how multiple input modules are
combined into a single program module.

The output module also contains the text from each input module. If the output is a load module, it also
contains an end-of-module indicator.

20 z/0S: z/OS MVS Program Management: User's Guide and Reference

Creating programs from source modules

Object Module A
OQutput Program
ESD -
™>T Object AB
:T:)'-g ESDA
END Program =S
TXTA
Management YT B
» Binder ‘
RLDA
Object Module B RLDB
ESD IDR A
TXT :g; Enker
RLD
IDR
END

Figure 6. A program object produced by the binder

As the binder processes object and program modules, it assigns relative virtual storage addresses to
control sections and resolves references between control sections.

Creating a load module

You can use the binder to create a load module in a PDS. The binder will produce a load module if
SYSLMOD is allocated to a PDS. The COMPAT setting has no effect on the decision to produce a load
module or a program object. Certain program module contents cannot be saved in a load module and if
you have used such features, either the module will be saved with an error indication or you will receive a
severe error indicating that the module could not be saved at all. Examples of such features are symbols
longer than eight characters or the use of multiple text classes. If you do not use any 64-bit features,
then the load module format is compatible across all releases of z/OS and between the binder and the
linkage editor. The linkage editor can process load modules produced by the binder and and the binder
can process load modules produced by the linkage editor. A load module produced by the binder on z/0OS
can be loaded and executed on any release of z/OS. However, this is not true if the load module has any
CSECTs or entry points marked as AMODE(64) or any eight-byte adcons. Such a load module cannot be
executed on a release prior to z/OS 1.3 and cannot be processed by the linkage editor.

Creating a program object

You can use the binder to create a program object in a PDSE program library. PDSE program libraries differ
in format from PDSE data libraries: Data members, including object modules, and program objects cannot
reside in the same library. For the format and content of the PDSE directory entry, see z/0S MVS Program
Management: Advanced Facilities.

You can also use the binder to create a program object in a z/OS UNIX file. The program object will have
the same content as a program object in a PDSE. You can copy a program object from a z/OS UNIX file
to a PDSE without loss of information or function. In most cases the same is true for a copy in the other
direction; see “Creating a program object in a z/OS UNIX file” on page 22.

Program objects stored in a PDSE library (or z/OS UNIX files) can consist of multiple text classes. At
load time, the program management loader will load each text class above or below 16 MB, depending
on attributes associated with that text class. Specifying the RMODE(SPLIT) binder option will cause the
module text in B_TEXT to be separated into up to three classes: B_TEXT24 for loading below the line,
B_TEXT31 for loading above the line, and B_TEXT64 for loading above the bar.

Chapter 2. Creating programs from source modules 21

Creating programs from source modules

When load modules and old (non-GOFF) object modules are used as inputs to create a program object,
the binder converts the old format to the new format by making the following changes:

 Control section names are changed to section names.

« The text of the control section is assigned to class B_TEXT, and an external label entry with the control
section's name is associated with the first byte of the element defined by the section name and class
B_TEXT, as noted above.

« Pseudoregister items are assigned to class B_PRV.

Multipart program objects

Under certain circumstances, the binder will create a program object with multiple segments. When
loading this type of module, each segment has a different load point. The binder currently uses RMODE
and time of load (initial or deferred) of the classes as the criteria for splitting a module into segments. If
all input is from traditional object modules (not XOBJ or GOFF) or load modules, a multipart module is
created only if RMODE(SPLIT) is specified. If using the assembler CATTR support to create user-defined
text classes (supported only in GOFF object format), or if GOFF or XOBJ object modules from a compiler
are part of the input, there can be text classes other than B_TEXT. The RMODE of these additional initial
load text classes is used to assign each of these classes to no more than 2 segments. In addition,
deferred load classes, such as C_WSA, are each placed in a separate segment. There is no binder external
to override this division into segments. Certain restrictions apply to multipart modules.

If you use the capabilities of the High Level Assembler or the binder RMODE(SPLIT) option to create
multipart program objects, certain restrictions apply.

« If the module is the target of a directed load (where the issuer of the LOAD is providing the storage in
which to load the module), the two class segments are concatenated and loaded into storage as a single
unit.

« All entry points (primary and alternate) must be defined in the same class.

« If parts of the program will reside above 16 MB, then you must ensure that the entire module can
execute with AMODE(31) or that linkage between sections on opposite sides of the 16 MB line use
BASSM or equivalent instructions to force an AMODE switch when necessary.

« A binder option, HOBSET, will cause the high order bit on V-type address constants to be set according
to the addressing mode of the target.

« Overlay format is incompatible with multipart program objects.

If a multipart program object is subsequently loaded through a directed load or by the binder, all text
classes are loaded into consecutive storage locations according to the minimum RMODE value for all
loaded classes.

Creating a program object in a z/0S UNIX file

To place a program object in a z/OS UNIX file, specify the PATH parameter on the SYSLMOD DD statement
in a batch bind job. You can also use the binder application programming interface or the z/OS UNIX c89
or ld command. You can use the following TSO commands to copy a program object between a PDSE to
and a z/OS UNIX file:

« OGET
« OGETX
« OPUT
« OPUTX

The following z/OS UNIX System Services commands will also allow you to copy and move executables
between a PDSE and z/OS UNIX files:

'Cp
e mv

Additional information on this topic can be found in the following documents:

22 7z/0S: z/OS MVS Program Management: User's Guide and Reference

Creating programs from source modules

« For the binder API, see: z/0S MVS Program Management: Advanced Facilities

« For TSO commands and z/OS UNIX System Services commands, see: z/0S UNIX System Services
Command Reference

When specifying PATH in a batch bind job, you can provide either the complete path name or a directory.
If the PATH parameter designates a directory, you must provide the file name on a NAME statement. The
name on the NAME statement must be no longer than 255 bytes.

You can also specify the PATHOPTS and PATHMODE parameters in the JCL. If you do not, and the JCL
designates a directory, the binder assigns attributes for the created file that allow only the file owner to
have read, write, and execute authority.

If you specify the PATH parameter for SYSLMOD, the save operation is always processed as though you
had specified REPLACE. Also, if you attempt to save a program object to a z/OS UNIX file and do not
provide a name through the NAME control statement, the binder does not create a temporary name as

it does when you save to a partitioned data set or PDSE under the same circumstance. Refer to the

NAME statement in Chapter 7, “Binder control statement reference,” on page 101 for a description of said
condition.

You can provide an ALIAS control statement to designate the pathname to be used for an alias. The binder
appends the path information on the SYSLMOD DD statement to each operand on the ALIAS control
statement in order to form each complete alias pathname.

Restrictions

1. You can execute a program object that resides in a z/OS UNIX file either by using z/OS UNIX
commands or through the BPXBATCH facility. You cannot execute such a program object from an
MVS batch job using EXEC PGM=.

2. z/0OS UNIX does not support alternate entry points. All aliases in z/OS UNIX program objects are
processed as though they were true aliases.

3. Overlay format modules are not supported in z/OS UNIX files.

Program object formats

The program object formats can be specified by the COMPAT option. The main purpose of the COMPAT
option is to notify the binder to generate a program object (PO) at a particular program-management (PM)
level.

When a COMPAT level is specified in terms of the z/OS system release, it corresponds to a specific
program-management level and program management sub-level (such as PM4SUB3). For best results,
specify the z/OS system. This can also be done to request a specific program management sub-level.
For example, while COMPAT=PM4 can be used instead of COMPAT=Z0SV1R3, using COMPAT=PM4SUB3
results in an error; COMPAT=Z0SV1R7 must be used instead. The following table shows the
corresponding z/0S system releases and program management levels.

Table 2. z/OS system releases, their corresponding program management levels, and features added

z/0S system release Program management level and | Summary of features added
sub-level

ZOSV2R5, ZOSV2R4, ZOSV2R3, [PM5SUBA4 COMPAT=Z0SV2R1 is the

ZOSV2R2, ZOSV2R1 minimum level that supports

preserving all boundary
alignments specifications coming
from ESD records. ALIGNT can
be used to specify boundary
alignments for both load
modules and program objects
without requiring the use of
COMPAT(ZOSV2R1).

Chapter 2. Creating programs from source modules 23

Creating programs from source modules

(continued)

Table 2. z/0S system releases, their corresponding program management levels, and features added

z/0S system release

Program management level and
sub-level

Summary of features added

ZOSV1R13

PM5SUB3

COMPAT=Z0SV1R13 is the
minimum level that supports
conditional sequential RLDs.

Z0OSV1R12, ZOSV1R11,
ZOSV1R10

PM5SUB2

COMPAT=Z0SV1R10 is the
minimum level that supports
saving the timestamp from
compiler IDRL records in
program objects. It also supports
the RLD type corresponding to
the assembler QY-con. The QY-
con is a special form of QCON
representing the displacement in
RXY type instructions.

ZOSV1R9, ZOSV1R8

PM5

COMPAT=PM5 is the minimum
level that supports cross-
segment references in relative
immediate instructions in
program objects.

CAUTION: Programs
bound with this

option cannot be

loaded, inspected, or
reprocessed on any
version prior to z/OS°® 1.8.

ZOSV1R7

PM4SUB3

COMPAT=Z0SV1R?7 is the
minimum level that supports
relative/immediate instructions
across compile units or
compression of non-program
data.

ZOSV1R6, ZOSVI1R5

PM4SUB2

COMPAT=Z0OSV1R5 is the
minimum level that can be
specified if RMODE 64 has been
specified by a compiler for
deferred load data segments.

24 z/0S: z/OS MVS Program Management: User's Guide and Reference

Creating programs from source modules

Table 2. z/0S system releases, their corresponding program management levels, and features added

(continued)

z/0S system release

Program management level and
sub-level

Summary of features added

ZOSV1R4, z/OSV1R3

PM4

COMPAT=PM4 is the minimum
level that can be specified if
any of the following features are
used:

» Input modules contain 8-byte
adcons

« Any ESD record is AMODE 64

« Input contains symbol names
longer than 1024, unless
EDIT=NO

» Avalue of 64 is specified on
the AMODE option or control
statement

If COMPAT=PM4 and OVLY are
both specified, COMPAT=PM4 is
changed to PM1. PM4 supports
all PM3, PM2 and PM1 featurzes.

Z0OSV1R2, ZOSV1R1, OSV2R10,
OSV2R9, OSV2R8

PM3

COMPAT=PM3 is the minimum
level that can be specified if
any of the following features are
used:

 Binding modules compiled
using the XPLINK attribute

« DYNAM=DLL

« XOBJ format input to the
binder without going through
the Language Environment®
prelinker, or rebinding modules
containing input from such
sources

« Hidden aliases (from ALIASES
control statement)

« Support for both deferred load
classes and merge classes with
initial text (from GOFF format
input modules or data buffers
passed by way of the binder
APIL)

 Language Environment-
enabled programs

If COMPAT=PM3 and OVLY are
both specified, COMPAT=PM3 is
changed to PM1. PM3 supports
all PM2 and PM1 features.

Chapter 2. Creating programs from source modules 25

Creating programs from source modules

Table 2. z/0S system releases, their corresponding program management levels, and features added
(continued)

z/0S system release Program management level and | Summary of features added
sub-level
Not applicable PM2 COMPAT=PM2 is the minimum

level that can be specified if any
of the following are used:

» User-defined classes passed
in GOFF format input as well
as certain other information
supported only in GOFF format

« Names (from input modules or
created by control statements
which cause renaming) that are
longer than 8 bytes.

» Use of RMODE=SPLIT

If OVLY is specified,
COMPAT=PM2 is changed to
PM1. PM2 supports all PM1
features.

Not applicable PM1 This is the minimum level which
supports binder program objects.
In addition to old linkage editor
load module features, program
object features supported here
include the following:

« Device-independent record
format

« Text length greater than 16
megabytes

« More than 32,767 external
names

OVLY is supported, and will force
PM1 to be used.

Clarifying sub-levels

In a case where the program management levels are identical and only the program management sub-
levels differ, this indicates that there is new binder functionality; however, none of the program object
information that the loader uses is incompatible (only information that the binder uses for rebinding,
diagnostics, and so forth is different). Therefore, when considering a COMPAT level, use just the program
management level without regard for the sub-level to determine the earliest release on which to use it.

For example, if z/OS VA1R7 is targetted with COMPAT=Z0SV1R7, create a PM4SUB3 format program
object. Then, in addition to z/OS V1R7, that program object can be run on releases all the way down

to z/OS V1R3, because that was the first release to introduce program management level PM4 format
(effectively, this is level 4, sub-level 1, or COMPAT level PM4SUB1 format — but the binder does not use
the SUB1 designation).

Be aware of the consequences of the program management sub-level when it indicates that there is new
binder function, because this means that the only thing that can be done is to run the program.

26 z/0S: z/OS MVS Program Management: User's Guide and Reference

Creating programs from source modules

For example, a format program object that is at COMPAT level PM4SUB3, contains information that

only a binder at z/OS V1R7 and above can understand. While the program can run based solely on the
program management level, without regard for the sub-level, it cannot be rebound with a binder (the
IEWL program, the TSO LINK command, or the UNIX ld utility) at a lower release program management
level and sub-level. No other programs running on a lower release z/OS system than that program can use
the Program Management Binder services against it. The services include the following:

. IEBCOPY
. SMP/E
. SPZAP

« Any programs that use the binder APIs (such as the AMBLIST, IEBCOPY, and UNIX utilities cp, mv, c89,
and nm)

The fast data APIs
« The binder C/C++ API interfaces introduced in z/OS V1R9.

Any attempt to do so by a properly coded program fails with the following message:

IEW2509S 3602 MODULE *NULL% IDENTIFIED BY DDNAME /0000001 IS AN UNSUPPORTED VERSION
AND CANNOT BE PROCESSED.

Each program object format that is introduced will support for features that were not previously available
and, except for overlay structure, each format will support all features provided by earlier formats. By
default, the binder will choose the earliest format supporting all of the features being used. See “COMPAT:
Binder level option” on page 78 for more information.

Note: As was indicated earlier, the binder also continues to support the old load module format. Note

the difference in terminology. A load module is stored in a standard partitioned data set in a format
compatible with older operating systems. A program object is stored in a PDSE (DSNTYPE=LIBRARY) or a
z/OS UNIX file in one of the formats listed above. The choice between load module and program object for
binder output is based solely on the output destination.

Binding

Assigning addresses

Each object or load module processed by the binder has an origin that was assigned during assembly,
compilation, or a previous execution of the binder or linkage editor. When several modules, each with
an independently assigned origin, are to be processed by the binder, the sequence of the addresses is
unpredictable. Two input modules can even have the same origin.

Each input module can be made up of one or more sections. To produce an executable program object or
load module, the binder assigns relative virtual storage addresses to each section.

The addresses in a program module are consecutive, but are all relative to base zero. When a program
is executed, the loading program prepares the module by loading it at a specific virtual storage location
and then increasing each address in the program by this base address. Each address constant is also
readjusted. This final readjustment is known as relocation.

The preceding discussion describes linker actions in processing load modules. When program objects
are processed, the output may contain more than one relocatable, loadable segment. In each segment,
addresses are relocated during binding relative to a zero base address for each segment; when the
segments are loaded, each address constant is relocated relative the the loading address of the segment
containing the referenced address. Figure 7 on page 28 illustrates how multiple segments are created.

Chapter 2. Creating programs from source modules 27

Creating programs from source modules

Input Module A

Text for class x

Text for class y Class x Class y
‘ Text from A ‘ Text from A
—» (Binder) —»
Input Module B ‘ Text from B ‘ Text from B
Text for class x Separately Separately
Relocatable Relocatable
Text for class y Segment Segment

Figure 7. Multiple segments

Resolving external references

The binder resolves module references, matching symbol references to symbol definitions by searching
for the external symbol definition in the ESD of each input module. Figure 8 on page 28 shows the binder
matching the external reference to B1 by locating the definition for B1 in the ESD of Module B. In the
same way, it matches the external reference to A11 by locating the definition for A11 in the ESD of Module

A.
Input Module A Input Module B
ESD for A ESD for B
Symbol Type Location Symbd Type Location
Al Section Known > B1i Section Known
Name Name
A1l Entry Known A1l Entry Known
Name « Name
B1 BExernal Unknown Section B1
Reference
Section A1
CALL A1
ENTRY A1l
CALLB1

Figure 8. Use of the external symbol dictionary

Note: External names, including section names and entry names, should be one to 32767 bytes in length.
No leading or embedded blanks are allowed, nor are the characters outside the range X'41' through X'FE'

28 z/0S: z/OS MVS Program Management: User's Guide and Reference

Creating programs from source modules

inclusive. However, the hexadecimal codes X'OE' and X'OF' are recognized as the shift-in and shift-out
codes respectively for double-byte character set (DBCS) encoding. All other characters are allowed in any
position of the name. Use special characters with caution, because the compilers and assemblers that
produce object modules often have a more limited character set and other operating system components
may not handle them properly.

Creation of an executable program in virtual storage

The IEWBLDGO entry point of the binder prepares an executable program in virtual storage and passes
control to it directly. It combines binding and loading functions into a single step, so it can be used for
compile-load-and-go and load-and-go jobs. IEWBLDGO cannot be used to produce a program module in a
partitioned data set or a PDSE.

IEWBLDGO cannot be used for programs containing deferred load classes (such as C_WSA). Most XOBJ
input to the binder will result in deferred load classes being built.

Addressing and residence modes

A program module has a residence mode assigned to it, and each entry point and alias has an addressing
mode assigned to it. You can specify one or both of these modes when creating a program module or
you can allow the binder to assign default values. For additional information see “AMODE and RMODE
hierarchy” on page 30. The addressing and residence modes must be compatible. The binder, however,
allows you to specify them as independent options and validates the combination when the module is
saved. See “AMODE and RMODE combinations” on page 31 for information on how the binder resolves
addressing and residence modes.

AMODEs and RMODEs can be assigned at assembly or compilation time for inclusion in an object module.
AMODE and RMODE values provided to the binder in the ESD data of an object module are retained in the
ESD data of the program module (except for overlay programs). Overriding the AMODE and RMODE values
in the ESD (see “AMODE and RMODE hierarchy” on page 30) sets the values in the program library
directory entry, but does not affect the ESD data.

A special, invalid combination of AMODE(ANY) RMODE(ANY), when appearing in ESD records, is
processed as AMODE(MIN). This setting is used by some compilers when creating OBJ-format object
modaules that do not support AMODE(MIN).

Addressing mode

You assign an addressing mode (AMODE) to indicate which hardware addressing mode is active when the
program executes. Addressing modes are:

24
indicates that 24-bit addressing must be in effect.

31

Indicates that 31-bit addressing must be in effect.
ANY

Indicates that either 24-bit or 31-bit addressing can be in effect.
64

Indicates that 64-bit addressing can be in effect.

Note: AMODE ANY(64) is not supported.

MIN
Requests that the binder assign an AMODE value to the program module. The binder selects the most
restrictive AMODE of all control sections in the input to the program module. An AMODE value of 24 is
the most restrictive; an AMODE value of ANY is the least restrictive.

Chapter 2. Creating programs from source modules 29

Creating programs from source modules

An AMODE value is provided for each entry point into the program module. The main program AMODE
value is stored in the primary directory entry for the program module. Each alias directory entry contains
the AMODE value for both the main entry point and the alias or alternate entry point.

Residence mode

You assign a residence mode (RMODE) to specify where the module must be loaded in virtual storage.
They cannot be loaded in a data space. Residence modes are:

24
Indicates that the module must reside below the 16-MB virtual storage line (within 24-bit
addressable virtual storage).

ANY | 31
Indicates that the module might reside anywhere in virtual storage below the 2-GiB virtual storage
bar. 31 is a synonym for ANY.
64
Indicates that the module might reside anywhere in virtual storage either above or below the 2-GB
virtual storage bar.
MIN
Indicates that the binder chooses an RMODE as the minimum value based on all the provided inputs.
Specifying RMODE(MIN,COMPAT) has the same effect as when the RMODE option is unspecified.
SPLIT
Indicates that the module is split into 2 class segments, , corresponding to two of the three possible

load - below the 16MB line, above the 16MB line and above the 2GB bar. For more information, see
“RMODE: Residence mode option” on page 92.

The binder places the RMODE value in each directory entry applicable to that program module.

RMODE option and multi-text class modules
Beginning with z/OS V1R12, the binder RMODE option applies by default to all initial load classes. This
can be overridden to pre-z/0S V1R12 behavior by specifying the RMODE scope as COMPAT.

RMODE(64)
When neither binder options RMODE=64 nor RMODEX are specified, RMODE(64) ESD are treated as
RMODE(ANY) for module loading and execution, with the exception of data class C_WSA64, which
can be loaded above the 2-gigabyte bar. In this case, the map in the binder listing and ESD records
obtained from program objects through the binder API (for example, by the AMBLIST service aid) will
show the original RMODE. However, for load modules, the ESD records are permanently modified.

AMODE and RMODE hierarchy

The binder uses the following hierarchy to determine the addressing and residence modes of the program
module output:

1. Values specified on the binder MODE control statement. See “MODE statement” on page 120 for more
information.

2. Values specified in the PARM field of the EXEC statement used to invoke the binder. See “AMODE:
Addressing mode option” on page 77 and “RMODE: Residence mode option” on page 92 for more
information.

3. For AMODE, value specified on the END record of a GOFF object module if the entry point from the
END record is used as the source of the primary entry point. The specified AMODE will be used for the
primary entry point and true aliases.

4. Values in the ESD data produced by the AMODE or RMODE assembler statements or by the compiler

5. Default values of AMODE=24 and RMODE=24 when neither AMODE nor RMODE have any specified or
derivable values.

30 z/0S: z/OS MVS Program Management: User's Guide and Reference

Creating programs from source modules

AMODE and RMODE combinations

If any of the following (AMODE, RMODE and RMODEX) are not specified on a MODE control statement or
in the PARM field of an EXEC statement, the binder derives a value based on information in the ESD.

If RMODE is not specified or is specified as MIN, RMODE 24 is assigned if either:

« Any section in the module has an RMODE of 24 (note that resident LPA-resident sections resulting from
the use of the RES Loader option are not considered when determining RMODE).

« An AMODE of 24 has been specified or defaulted.

If any section in the module has an RMODE of ANY (31), or RMODEX is not specified, the module is
assigned an RMODE of ANY (31).

Otherwise, the module is assigned an RMODE of 64. Some sections (for example, those resident in the
LPA) are not considered when determining RMODE.

If RMODE is specified (other than MIN or SPLIT), the RMODE is assigned to the entire module.

If AMODE is not specified, each entry point and alias in the module is assigned the AMODE of that entry
point. If the entry point or alias does not correspond to a defined symbol or the symbol does not specify
an AMODE, the AMODE of the control section containing the entry point or alias will be used.

If the AMODE of the section containing the entry point is AMODE(MIN) then the entry point is assigned
the most restrictive AMODE of all control sections in the input to the program module. Note that the
AMODE(MIN) can be in effect due to the conversion of ESD values AMODE(ANY) RMODE(ANY) (see
“Addressing and residence modes” on page 29).

AMODE and RMODE validation
The binder validates the AMODE and RMODE combination according to the following table:

RMODE=24 RMODE=ANY RMODE=64
AMODE=24 valid invalid invalid
AMODE=31 valid valid invalid
AMODE=ANY valid invalid invalid
AMODE=64 valid valid valid

A combination of AMODE=ANY and RMODE=ANY is changed to AMODE=31 and RMODE=ANY unless
AMODE=ANY has been directly specified on a control statement or batch parameter. In this case, an error
message is issued.

If AMODE is equal to 24 or ANY and RMODE=ANY has been directly specified as a PARM field option or on
a control statement, an error message is issued and processing continues.

If AMODE is equal to 24, 31 or ANY and RMODE=64 has been directly specified as a PARM field option or
on a control statement, an error message is issued and processing continues.

AMODE and RMODE for overlay programs

All entry points in program modules built in overlay format are assigned an AMODE of 24 and the program
modules are assigned an RMODE of 24 regardless of any other values you have specified. RMODE(SPLIT)
is not supported for overlay programs.

Module reusability

Reusability is a generic term describing the degree to which a module can be shared, reused or replaced
during execution. It incorporates the following attributes:

« Nonreusable. The module is designed for single use only and must be refreshed before it can be reused.

Chapter 2. Creating programs from source modules 31

Creating programs from source modules

« Serially reusable. The module is designed to be reused and therefore must contain the necessary logic
to reset control variables and data areas at entry or exit. A second task cannot enter the module until
the first task has finished.

« Reenterable (reentrant). The module is designed for concurrent execution by multiple tasks. If a
reenterable module modifies its own data areas or other shared resources in any way, appropriate
serialization must be in place to prevent interference between using tasks.

« Refreshable. All or part of the module can be replaced at any time, without notice, by the operating
system. Therefore, refreshable modules must not modify themselves in any way.

Unlike AMODE, reusability is an attribute of the entire module, not any particular entry point. It should
be chosen based on the operational characteristics of the module and not on the reusability status of
individual control sections or data classes.

The linkage editor processed the serially reusable (REUS), reenterable (RENT) and refreshable (REFR)
attributes as separate and independent options. The binder, however, treats them as a single, multivalued
attribute with an implied hierarchical relationship: “refreshable” implies “reenterable” and “reenterable”
implies “serially reusable”. This might result in some confusion for prior linkage editor users who are
accustomed to specifying inconsistent combinations of these attributes, such as “REFR,NORENT”. In such
situations the binder selects the strongest reusability attribute among those specified. In addition, unlike
the linkage editor, the binder honors any override of reusability specified in the PARM statement.

In order to eliminate such conflicts, specify only a single attribute from the set. Use the keyword(value)
form, such as REUS(RENT), rather than keyword-only specifications, such as NORENT or REFR.

Binder extensions supporting the Language Environment

Compatibility with prelinker functions

The binder can directly process XOBJ modules in the format accepted by the IBM Language Environment
for MVS & VM prelinker, a utility used as an interim step in the binding of many Language Environment-
enabled programs. See z/0S Language Environment Programming Guide for additional information.

Added capability in the binder allows for direct processing of XOBJ object modules, obviating the need
for the prelinker and simplifying the process for binding such programs. This provides for the creation of
rebindable modules, since the binder preserves sufficient information in the saved module to allow the
replacement of one or more compilation units.

The binder supports control statements that are functionally equivalent to those offered by the prelinker.
The following table shows the relationships between binder and prelinker control statements.

Binder Prelinker

AUTOCALL LIBRARY with OE options
LIBRARY* LIBRARY with NOOE option
IMPORT IMPORT

RENAME RENAME

*The binder LIBRARY statement also accepts the same syntax used with the binder AUTOCALL statement
(that is, specification of only a library name). The difference is that AUTOCALL is for incremental
(immediate) autocall, while LIBRARY adds to the libraries used for final autocall. This latter LIBRARY
capability is unique to the binder, it is not available with the Prelinker.

Note: Prelinker replacement is supported by the binder only for program objects in PO3 (or later) format.
It is not supported for output saved in a load module.

Each XOBJ module will be converted to one or more named or unnamed sections in the program
object. The input XOBJ text will be moved to specific binder text classes. The recipe cards in the XOBJ
that provide instructions for initializing writable static will be converted into actual initialized text. The
following table shows the major classes generated during XOBJ conversion.

32 z/0S: z/OS MVS Program Management: User's Guide and Reference

Creating programs from source modules

Input XOBJ Class in output program object
reentrant code C_CODE

writeable static C_WSA

text in csect STINIT C_@@STINIT

text in csect DLLI C_@@DLLI

text in csect PPA2 C_@@PPA2

The binder also creates a table for use by Language Environment runtime routines in class B_LIT. If they
are generated, these classes can be seen in the binder map output for section IEWBLIT.

Binder support for DLLs

DLL support in MVS is provided by the z/OS Language Environment component. Only programs that are
Language Environment-enabled can serve as DLLs or use DLL routines.

The DYNAM(DLL) option controls DLL processing. If DYNAM(DLL) is specified the binder will:
« In some cases, create linkage descriptors in C_WSA
 Process IMPORT control statements

- Build a table of information about imported and exported functions for the use of Language
Environment run-time routines. This will appear in the map as class B_IMPEXP.

« Create a side file of IMPORT control statements, corresponding to functions and data being exported by
the module being built.

Note: The binder creates sections named IEWBLIT and IEWBCIE. Since this could potentially cause
conflict with user-created section names, avoid using section names beginning with the characters IEWB.

For guidance on how to create DLLs and dynamic link libraries, see Building and Using Dynamic Link
Libraries (DLLs) in z/OS Language Environment Programming Guide.

Chapter 2. Creating programs from source modules 33

Creating programs from source modules

34 z/0S: z/OS MVS Program Management: User's Guide and Reference

Starting the binder

Chapter 3. Starting the binder

You can invoke the binder as you would any other program: as a job step, a subprogram or a subtask, and
as a TSO or UNIX System Services command. You can execute the binder as a job step by specifying it

on an EXEC job control statement in the JCL stream; you can execute it as a subprogram or subtask by
using the ATTACH, LINK, LOAD, or XCTL macros. You can execute it under TSO with the LINK or LOADGO
commands or in a UNIX environment with the c89 or ld commands. This topic describes these methods of
invoking the binder.

Note: This section refers to binder processing and output. These concepts apply equally to linkage editor
and batch loader processing unless otherwise noted in Appendix A, “Using the linkage editor and batch
loader,” on page 157. The linkage editor and batch loader cannot process program objects.

Invoking the binder with JCL

You describe execution of the binder and the data sets used by the binder to the system with job control
language (JCL) statements.

This section summarizes those aspects of JCL that apply to the invocation of the binder. The major topics
covered are the EXEC statement, the DD statements, and the cataloged procedures for the binder. You
should be familiar with JCL as described in z/0S MVS JCL User's Guide.

Binder JCL example

Figure 9 on page 35 contains an example of some JCL statements to invoke the binder. You can

tailor these statements for your own programming requirements. These statements are similar to the
linkage editor JCL statements. In fact, we constructed the example by modifying a set of JCL statements
originally used to invoke the linkage editor.

If you need assistance with any of the statements or options, the EXEC statement parameter options are
described in Chapter 6, “Binder options reference,” on page 69 and the input control statements are
described in Chapter 7, “Binder control statement reference,” on page 101. The EXEC and DD statements
are described in the remainder of this topic.

//LKED EXEC PGM=IEWL,PARM='XREF,6LIST', IEWL is alias of IEWBLINK
// REGION=2M,COND=(5,LT,prior-step)

//*

//* Define secondary input

//*

//SYSLIB DD DSN=language.library,DISP=SHR optional
//PRIVLIB DD DSN=private.include.library,DISP=SHR optional
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL, (1,1)) ignored

//*

//* Define output module library

//*

//SYSLMOD DD DSN=program.library,DISP=SHR required
//SYSPRINT DD SYSOUT=x required
//SYSTERM DD SYSOUT=x optional

//*

//* Define primary input

//*

//SYSLIN DD DSN=&&OBJECT,DISP=(MOD, PASS) required

// DD =* In-stream control statements

INCLUDE PRIVLIB(membername)
ENTRY entname
NAME modname (R)

/*

Figure 9. Binder JCL example

© Copyright IBM Corp. 1991, 2021 35

Starting the binder

EXEC statement

The EXEC statement is the first statement of every job step. For the binder job step, you can specify:

« The program name of the binder
« Binder options passed to the binder program
- Region size requirements for the binder.

EXEC statement—PGM parameter
The PGM parameter on the EXEC statement names the program to be executed. The binder is executed
using these program names:

IEWBLINK
Binds a program module and stores it in a program library. Alternative names for IEWBLINK are IEWL,
LINKEDIT, HEWL, and HEWLHQ96.

IEWBLDGO
Binds a program module, loads it into virtual storage, and executes it. Alternative names for
IEWBLDGO are IEWLDRGO, LOADER, and HEWLDRGO.

For example, the following EXEC statement invokes the binder:

//LKED EXEC PGM=IEWBLINK

EXEC statement—PARM field

The EXEC statement can pass various options to the binder using the PARM field. These options perform
the following types of services:

- Assigning module attributes that describe the characteristics of the output program module
« Invoking special binder processing services (for example, exclusive call and automatic call)

« Defining the amount of storage to be used by the binder for processing and output program library
buffers

- Specifying the kind of output the binder is to produce.

These options can be coded in any order in the PARM field, or can be listed in a data set and included
using the OPTIONS keyword.

See Chapter 6, “Binder options reference,” on page 69 for information on individual options.

Preparing the PARM field to invoke the loader

When you invoke the loader, (PGM=IEWBLDGO), both the loader and the loaded program options are
specified in the PARM field. The PARM field has this syntax:

, PARM=" [loaderoptions] [/programoptions] '

The loaded program options, if any, must be separated from the loader options by a slash (/). If there are
no loader options, the program options must begin with a slash. The entire PARM field can be omitted if
there are neither loader nor loaded program options. Parameters must be enclosed in single quotation
marks when special characters (/ and =) are used.

EXEC statement—REGION parameter

The REGION parameter specifies the maximum amount of storage that can be allocated to satisfy a
request for storage made by the binder. You should normally not need to specify this parameter if
the installation default region size or system procedures specify enough storage. The recommended
minimum region size is 2 MB. While the amount of storage required by the binder is directly related
to the number of pieces being bound together (not necessarily the text size itself, but the number of

36 z/0S: z/OS MVS Program Management: User's Guide and Reference

Starting the binder

CSECTs, load modules, RLDs, etc. being combined), in most cases 2 MB should be sufficient. The binder
executes in 31 bit addressing mode so storage can be obtained from above the line (if available). The
recommended values for region size are 2048 KB for program modules with a text size of 1024 KB or
less, and twice the text size for program modules with a text size greater than 1024 KB. The binder
usually requires a larger region size than the linkage editor. Unlike the linkage editor, the binder does not
use temporary disk data sets when virtual storage is exhausted. In addition, the binder can build larger
programs than the linkage editor, and so might need more virtual storage.

DD statements

Every data set that the binder uses must be described with a DD statement. Each DD statement must
have a name, unless data sets are concatenated. The DD statements for data sets the binder requires
have preassigned names, those for additional input data sets have names you assign, and those for
concatenated data sets (after the first) have no names. When you invoke the binder from another
program, you can allocate some or all of the binder's data sets using dynamic allocation instead of JCL.

Note:

1. The binder supports all data sets allocated in the extended addressing space (EAS) of an extended

address volume (EAV).

2. The binder supports the following dynamic allocation (DYNALLOC or SVC 99) options for all data sets:
S99TIOEX(XTIOT), S99ACUCB(NOCAPTURE), and S99DSABA(DSAB above the line).

Binder DD statements

The binder uses eight types of data sets. Some are required, and the DD statements for all but two use the
preassigned ddnames shown in Table 3 on page 37. The following descriptions give device and data set

information for each binder data set.

Table 3. Binder DDNAMES

Data set ddname Required
Primary input data set SYSLIN Yes
Options data set any name Required when OPTIONS=ddname
coded in PARM field of EXEC statement.
IEWPARMS No
Automatic call library SYSLIB Only if automatic library call is used
Other include library or sequential data any name Required when referenced on INCLUDE
set statement
Diagnostic output data set SYSPRINT SYSPRINT is required when using the
SYSLOUT IEWBLINK entry point.
Output module library SYSLMOD Required when using the IEWBLINK
entry point.
Alternate output data set SYSTERM Only if the TERM option is specified
Output data set for side file (import SYSDEFSD No

records used during dynamic binding)

SYSLIN DD statement

The SYSLIN DD statement is required. This statement describes the primary input data set, which can be
a sequential data set, a partitioned data set member, a PDSE member, an in-stream data set, or a z/0OS
UNIX file. If it is a z/OS UNIX file, you must specify the PATH parameter and the FILEDATA parameter

must either be unspecified or specified as FILEDATA=BINARY.

Chapter 3. Starting the binder 37

Starting the binder

Each data set in the primary input must contain object modules and control statements, load modules,
or program objects. They cannot be mixed within a data set except that control statements can appear
before or after an object module in the same data set. Data sets can be concatenated under the SYSLIN
DD statement to define the primary input. The binder does not support concatenation of z/OS UNIX files.

“Defining the primary input” on page 46 contains information about input requirements.

The data characteristics vary by data type and are shown in Table 4 on page 38.

Table 4. SYSLIN data set DCB parameters. This table shows the logical record length, block size, and
record format.

LRECL BLKSIZE RECFM

80 80 F, FS, OBJ, XOBJ, control statements, and GOFF
80 32720 (maximum size) FB, FBS OBJ, XOBJ, control statements, and GOFF
84+ 32720 (maximum size) V, VB, GOFF object modules

n/a 32720 (maximum size) U, load modules

n/a 4096 U, program objects

Options data set

A DD statement defining an options data set is required if the OPTIONS keyword has been included in the
PARM field of the EXEC statement. When the OPTIONS keyword is included, some or all of the processing
and attribute options are encoded in a data set instead of in the PARM field. See “OPTIONS: Options
option” on page 89 for information on how to code the options data.

The options DD statement is coded using the same ddname as specified on the OPTIONS keyword. The
DSNAME parameter references an existing file containing 80-byte records. It can be a sequential data set,
a member of a partitioned data set, a z/OS UNIX file sequential data set, or a concatenation of sequential
data sets.

IEWPARMS DD statement

The IEWPARMS DD statement is optional. The DSNAME parameter on the IEWPARMS DD references to
an existing file containing 80-byte records. The data set can be a sequential data set, a member of a
partitioned data set, a z/OS UNIX file sequential data set, or a concatenation of sequential data sets.

SYSLIB DD statement

The SYSLIB DD statement is required if your program has external references that have not been resolved
explicitly, unless you have specified the NOCALL option. This DD statement describes the automatic call
library, which must reside on a direct access storage device. The data set must be a library and you must
not specify member names. You can concatenate any combination of object module libraries and program
libraries for the call library. If object module libraries are used, the call library can also contain any control
statements other than INCLUDE, LIBRARY, and NAME. If this DD statement specifies a z/OS UNIX file, you
can specify either a z/OS UNIX archive library or a PATH parameter that designates a directory.

The required data characteristics for object module libraries are the same as those shown in Table 4 on
page 38. For program libraries, a record format of U is required. For partitioned data set program libraries,
the maximum block size is equal to the maximum for the device used, not the record read. For PDSE
program libraries, the block size is 4 KB. You do not specify a value.

The binder does not support z/OS UNIX files as part of a concatenation.

SYSPRINT and SYSLOUT DD statements

If you use IEWBLINK or an alias of IEWBLINK, the SYSPRINT DD statement is required. If you use
IEWBLDGO or one of its aliases, you can include a SYSLOUT DD statement, but SYSLOUT is not required.
Both SYSPRINT and SYSLOUT describe the diagnostic output data set, which can be a sequential data set

38 z/0S: z/OS MVS Program Management: User's Guide and Reference

Starting the binder

assigned to a printer or to a temporary storage device. If a temporary storage device is used, the data
records contain an ANSI control character as the first byte.

The usual specification for this data set is SYSOUT=* The binder uses a logical record length of 121 and a
record format of FBA and allows the system to determine an appropriate block size.

Table 5 on page 39 shows the data set requirements for SYSPRINT and SYSLOUT. Block size is the only
information that you can provide.

Table 5. SYSPRINT and SYSLOUT DCB parameters. This table shows the logical record length, block size,
and record format.

LRECL BLKSIZE RECFM
121 121 FA

121 32670 (maximum size) FBA

125 VA or VBA

SYSPRINT or SYSLOUT can also be assigned to a z/OS UNIX file. In this case, FILEDATA=TEXT must also
be specified.

SYSLMOD DD statement

The following SYSLMOD information applies only to the batch interface of the binder:

- The SYSLMOD DD statement is required. It describes the output program library, which must be a
partitioned data set, a PDSE, or a z/OS UNIX file. If it is a z/OS UNIX file, you must specify the PATH
parameter. z/OS UNIX supports the use of an alternate ddname for SYSLMOD.

« A member name can be specified on the SYSLMOD DD statement. If a member name is specified, it is
used only if a name was not specified on a NAME control statement. This member name must conform
to the rules for the name on the NAME control statement (see “NAME statement” on page 121).

 If SYSLMOD is referenced by an INCLUDE statement, a member name on the DD statement must be the
name of an existing member.

Note: If you specify the PATH parameter on this DD statement, but do not specify PATHOPTS or
PATHMODE, the binder assigns attributes for the created file that allow only the file owner to have read,
write, and execute authority.

« When a NAME statement is not used and a member name is supplied on the SYSLMOD DD statement,
the behavior is to REPLACE (just as when using NAME with (R), or SAVEW with REPLACE=YES).

The following SYSLMOD information applies to both the batch interface and the Application Programming
Interface of the binder:

- If the member replaces an identically named member in an existing library, the disposition should be
OLD or SHR.

« If the member is added to an existing library, the disposition should be MOD, OLD, or SHR.

« If no library exists and the member is the first added to a new library, the disposition should be NEW or
MOD.

- If the member is added to an existing library that can be used concurrently by other users in the system
or in other systems sharing the library, the disposition should be SHR.

« Programs which call the binder can specify a different DD name to replace SYSLMOD. All references
here to SYSLMOD also apply to that replacement name.

« If SYSLMOD defines a NEW data set, do not specify the RLSE subparameter because the binder closes
the data set after saving each member.

« Do not specify the FREE=CLOSE parameter on the SYSLMOD dataset, whether it is NEW or OLD.
« The binder writes data to a PDS or PDSE in RECFM=U format.

Chapter 3. Starting the binder 39

Starting the binder

— If the data set is being created in this step without an explicit RECFM, or already exists but has no
record format, the binder will set its record format to U.

— If the data set already has a record format other than U, the binder will not write to it unless you
provide an explicit override of RECFM=U.

- A PDSE cannot contain a mixture of program objects with other data, so an explicit override of
RECFM=U is likely to fail in that case.

- A PDS can contain a mixture of load modules with other data, but overriding the data set record
format may interfere with access to other data in the PDS.

« The binder always assigns a block size of 4 KB to a program object. Procedures used by the binder to
assign block size to a load module are:

1. If the data set is new:
a. When the DCBS option is not specified

— When the data set is created without a block size, the block size is the maximum supported by
the access method for that device type.

— When the data set is created with a block size, the block size specified on the DD statement is
used if it is smaller than the maximum block size supported by the device.

— Certain of the binder options can restrict the blocksize. The block size is:
- 1KB if the DC option is specified,
- the value specified on the MAXBLK option,
- one-half the value specified for value2 on the SIZE option,
b. When the DCBS option is specified, the block size is the smaller of:
— The maximum block size for the device
— The value of the BLKSIZE parameter on the SYSLMOD DD statement
— The actual output buffer length.
c. The minimum block size is 256 bytes.
2. If the data set already exists:

— When the DCBS option is not specified, the larger of the existing block size or 256 bytes is used.

— See “DCBS option” on page 81 for the block size determination when the block size exists and
the DCBS option is specified.

In the following example, the SYSLMOD DD statement specifies a permanent partitioned data set library
on an IBM 3390 direct access storage device:

//SYSLMOD DD DSNAME=USER.USERLIB(TAXES) ,DISP=NEW,UNIT=3390, ...

The binder assigns a record format of U and a block size of 32760 bytes. However, consider the following

example:
/ /LKED EXEC PGM=IEWBLINK,PARM='XREF,DCBS'
//SYSLMOD DD DSNAME=USER . USERLIB(TAXES) ,DISP=SHR,UNIT=3390,

// DCB=BLKSIZE=8000

The binder still assigns a record format of U, but the block size is 8000 bytes rather than 32760 bytes
because of the use of the DCBS option.

SYSTERM DD statement

The SYSTERM DD statement is optional. It defines a data set for binder messages that supplements the
SYSPRINT data set.

40 z/0S: z/OS MVS Program Management: User's Guide and Reference

Starting the binder

SYSTERM output is defined by including a SYSTERM DD statement and specifying TERM in the PARM field
of the EXEC statement. SYSTERM output consists of messages that are written to both the SYSTERM and
SYSPRINT data sets.

The following example shows the SYSTERM DD statement used to specify the system output unit:

//SYSTERM DD SYSOUT=A

The data set characteristics for SYSTERM (LRECL=80 and RECFM=FB) are supplied by the binder. The
block size can be any multiple of 80 bytes acceptable to the hardware. If necessary, the binder modifies
the data set characteristics of an existing data set to enforce the LRECL and RECFM values. SYSTERM can
also be allocated to a z/OS UNIX file. In this case, FILEDATA=TEXT must also be specified.

SYSDEFSD DD statement

When the DYNAM(DLL) option is used to build a DLL module, a side file might be generated along with

it. The side file is saved in the data set represented by the SYSDEFSD ddname. The side file contains the
symbols from which other DLLs can import; that is, which symbols the DLL "exports". Consequently, a side
file contains a collection of IMPORT control statements that can be used by other DLLs in order to resolve
their own external references during dynamic linking.

SYSDEFSD can be a sequential data set, a z/OS UNIX file, a PDS, or a PDSE. If your job binds multiple
DLLs and SYSDEFSD represents a sequential data set or a z/OS UNIX file, the side file records of a given
DLL can overwrite or append to the records of a previously saved side file, depending on the DISP or
PATHOPTS parameter of your side file ddname.

If SYSDEFSD is a PDS or a PDSE, the binder saves the side file as a member of the indicated partitioned
data set. The binder progresses through the following sources until it determines the name to use for the
side file:

1. The binder uses the member name specified in the JCL for the SYSDEFSD DD. Note that in this case
the side file is treated as a sequential file.

2. If no member was specified, the binder uses the name specified in the NAME control statement for the
saved DLL.

3. If there is no NAME control statement, the binder uses the name expressed in the JCL SYSLMOD DD
statement.

The SYSDEFSD DD statement is optional. However, when it is absent, the binder issues a warning
message if at bind time a module (DLL) generates export records and the DYNAM(DLL) binder option
has been specified. Note that the side file can be referred to as the definition side deck by other products.

Table 6 on page 41 shows the data set requirements for SYSDEFSD.

Table 6. SYSDEFSD DCB parameters. This table shows the logical record length, block size, and record
format.

LRECL BLKSIZE RECFM

80 32760 (maximum size) F,FB

Additional DD statements

Each ddname specified on an AUTOCALL, INCLUDE or LIBRARY control statement must be defined with

a DD statement. These DD statements describe sequential data sets, partitioned data sets, PDSEs, or
z/0OS UNIX files. With the exception of z/OS UNIX files, the DD statement may describe a concatenation of
object module libraries and program libraries.

You specify the ddnames along with any other necessary information. The requirements for these data
sets are shown in Table 7 on page 42.

Chapter 3. Starting the binder 41

Starting the binder

Table 7. INCLUDE and LIBRARY control statements DCB parameters. This table shows the logical record
length, block size, and record format.

Data set contents LRECL BLKSIZE RECFM
Object modules or control 8080 80 32760 (maximum) F, FS FB, FBS
statements

Load modules Ignored Maximum for device, or value u

specified on the MAXBLK option,
whichever is smaller

Program objects Ignored 4096 u

Binder cataloged procedures

The MVS operating system allows you to store job control statements under a unique member name in a
procedure library. Such a series of statements is called a cataloged procedure. These JCL statements can
be recalled at any time to specify the requirements for a job. To request this procedure, place an EXEC
statement in the input stream. This EXEC statement specifies the unique member name of the desired
procedure.

The specifications in a cataloged procedure can be temporarily overridden, and DD statements can be
added. The information that you alter is in effect only for the duration of the job step; the cataloged
procedures are not altered permanently. Any additional DD statements that you supply must follow
those that override existing JCL statements in the same procedure step. For more information on using
cataloged procedures, see z/0S MVS JCL User's Guide.

Two binder cataloged procedures are provided: a single-step procedure that binds the input and produces
a program module (LKED procedure), and a two-step procedure that binds the input, produces a program
module, and executes that module (LKEDG procedure). Many of the cataloged procedures provided for
language translators also contain binder steps. The EXEC and DD statement specifications in these steps
are similar to the specifications in the cataloged procedures described in the following paragraphs.

LKED procedure

LKED is a single-step procedure that binds the input, produces a program module, and passes the module
to another step in the same job.

//LKED EXEC PGM=HEWLH®96,PARM='MSGLEVEL (4) ,XREF,LIST,LET,NCAL",
// REGION=2M

//SYSPRINT DD SYSOUT=+

//SYSLIN DD DDNAME=SYSIN

//SYSLMOD DD DSN=&&GOSET (GO) ,SPACE=(1024, (50,20,1)),

// UNIT=SYSDA, DISP=(MOD, PASS)

Statement description
A description of the statements in the procedure follows:

EXEC
The PARM field specifies the NCAL option. If an automatic call library is used, you must override the
NCAL option and add a SYSLIB DD statement.

SYSPRINT
Specifies the SYSOUT class A, which is either a printer or a temporary storage device. If a temporary
storage device is used, ANSI control characters accompany the data to be printed.

SYSLIN
The specification of DDNAME=SYSIN allows you to specify any input data as long as it fulfills the
requirements for binder input. You must define the input data with a SYSIN DD statement. This data
can be either in the input stream or reside in one or more separate data sets.

If the data is in the input stream, use the following DD statement:

42 z/0S: z/OS MVS Program Management: User's Guide and Reference

Starting the binder

//LKED.SYSIN DD *

Place the SYSIN statement following all overriding DD statements for the LKED catalog procedure.
The object module decks and control statements should follow the SYSIN statement, with a delimiter
statement (/*) at the end of the input.

If the data resides in separate data sets, use the following DD statement:

//LKED.SYSIN DD (parameters describing the input data set)

Place the SYSIN statement following all overriding DD statements for the LKED catalog procedure.
Several data sets can be concatenated as described in Chapter 4, “Defining input to the binder,” on
page 45.

SYSLMOD
Specifies a temporary data set and a general space allocation. The disposition allows the next job
step to execute the program module. If the module is to reside permanently in a library, these general
specifications must be overridden.

Invoking the LKED procedure

To invoke the LKED procedure, code the following EXEC statement:

//stepname EXEC LKED

The following example shows a sample JCL sequence for using the LKED procedure in one step to bind
object modules to produce a program module, then execute the program module in a subsequent step.

//LESTEP EXEC LKED

(Overriding and additional DD statements for the LKED step)
//LKED.SYSIN DD *

(Object module decks and control statements)
//EXSTEP EXEC PGM=+ . LESTEP.LKED.SYSLMOD

(DD statements and data for load module execution)

LESTEP invokes the LKED procedure and EXSTEP executes the program module produced by LESTEP.

LKEDG procedure

LKEDG is a two-step procedure that binds the input, produces a program module, and executes that
module. The statements in this procedure are shown in the following example. The two procedure steps
are named LKED and GO. The specifications in the statements in the LKED step are identical to the
specifications in the LKED procedure.

//LKED EXEC PGM=HEWLH096,PARM="MSGLEVEL (4) ,XREF,LIST,NCAL",
// REGION=2M

//SYSPRINT DD SYSOUT=*

//SYSLIN DD DDNAME=SYSIN

//SYSLMOD DD DSN=&&GOSET (GO) ,SPACE=(1024, (50,20,1)),

// UNIT=SYSDA,DISP=(MOD, PASS)
//GO EXEC PGM=*.LKED.SYSLMOD, COND=(4,LT,LKED)
GO Step

The EXEC statement specifies that the program to be executed is the program module produced in
the LKED step of this job. This module was stored in the data set described on the SYSLMOD DD
statement in that step. (If a NAME statement was used to specify a member name other than that
used on the SYSLMOD statement, use the LKED procedure and provide your own GO step.)

The condition parameter specifies that the execution step is bypassed if the return code issued by the
LKED step is greater than 4.

Invoking the LKEDG procedure
To invoke the LKEDG procedure, code the following EXEC statement:

Chapter 3. Starting the binder 43

Starting the binder

//stepname EXEC LKEDG

The following example shows a sample JCL sequence for using the LKEDG procedure to bind object
modules, produce a program module, and execute that module.

//TWOSTEP EXEC LKEDG
(Overriding and additional DD statements for the LKED step)
//LKED.SYSIN DD *
; (Object module decks or control statements, or both)
*
(DD statements for the GO step)
//GO.SYSIN DD *
(Data for the GO step)
/*

Invoking the binder under TSO

You can invoke the binder under TSO (Time Sharing Option) with the LINK and LOADGO commands. You
may also be able to run it from an ISPF foreground panel, and if you want to do all of the allocations
yourself, you can use CALL.

The LINK command creates a program module and saves it in either a partitioned data set or PDSE
program library.

When using the LINK command to process binder control statements, you must allocate any referenced
ddnames before the LINK command is invoked. The binder gives you the capability of including modules
and control statements from the automatic call library (SYSLIB) or including program modules from the
module output library (SYSLMOD). If you specify SYSLIB or SYSLMOD on an INCLUDE statement but have
not allocated data sets to those ddnames, the binder will attempt to process the INCLUDE statement
using the data sets indicated on the LIB or LOAD parameters, respectively.

The LOADGO command creates and executes a program module. The module is not saved in a program
library. The LOADGO command invokes a prompter that allows you to define any necessary data sets to
the system; you can use LOADGO operands to specify the loading options the job requires.

To use the TSO CALL command, you first need to use ALLOCATE to set up file names corresponding to the
JCL DD statements described earlier in this topic. Then, use the following command to invoke the binder:

CALL *(IEWL) 'options'

See z/0S TSO/E Command Reference for the procedures for using these commands.

Invoking the binder from the z/0S UNIX Shell

You can invoke the binder from the z/OS UNIX shell using the c89 and the ld commands. See z/0S UNIX
System Services Command Reference for more information.

Invoking the Binder from a program

You can pass control to the binder from a program in one of two ways:

1. As a subprogram, with the execution of a CALL macro instruction (after the execution of a LOAD macro
instruction), a LINK macro instruction, or an XCTL macro instruction.

2. As a subtask with the execution of the ATTACH macro instruction.

You can also request binder services through either of two application programming interfaces. For
additional information, see z/0S MVS Program Management: Advanced Facilities.

44 z/0S: z/OS MVS Program Management: User's Guide and Reference

Input into the binder

Chapter 4. Defining input to the binder

Batch input to the binder consists of the primary input data set and additional data sets. You define
the primary input data set using job control statements. You can include more modules by specifying
additional control statements and by directing the binder to use call libraries.

Input data sets can contain control statements, object modules of any type, load modules and program
objects. The following table shows the data set types in which data can reside.

Sequential data PDS member PDSE member z/0S UNIX file
set

Control Statements | X

Object Modules (all | X X X X
types)

Load Modules X

Program Objects X X

A single library member can contain only one program object or load module, but any number of control
statements and object modules in combination.

z/0S UNIX files can contain binder input of all types except load modules. You specify z/OS UNIX

either by coding the PATH parameter on your JCL or by providing the path name on the INCLUDE or
AUTOCALL control statements. See Chapter 7, “Binder control statement reference,” on page 101 for
more information. Where sequential processing or archive file access is required, you must include the
full file name on the PATH parameter; otherwise, code only the directory name for PATH, omitting the last
level of qualification (file name). The file name will be supplied by the binder, either from the INCLUDE
statement or from the unresolved reference during autocall.

In addition to the data set type, you must consider how the binder will access the data set. Sequential
access requires that a physical sequential data set be specified or that a member name be specified with
the library dsname. Partitioned access requires that a partitioned data set, PDSE, z/OS UNIX archive file,
or z/OS UNIX directory be specified without an associated member or file name. Access requirements
depend on the time that the input is required:

« Primary input is accessed sequentially. Any library in the concatenation must include a member name
with the dsname or path.

« Secondary (included) input can be either sequential or partitioned. If partitioned, the member name(s)
must be specified on the INCLUDE control statement.

« Autocalled input must be partitioned.
The binder supports mixed concatenations of the above, with the following exceptions:

« You must not mix data set types in a single concatenation. All concatenated data sets must be either
partitioned or sequential, not both. A PDS or PDSE member is treated as a sequential data set

« The binder does not support z/OS UNIX files concatenated with other z/OS UNIX files or data sets of any
type.

Note: This topic refers to binder processing and input. These concepts apply equally to linkage editor
and batch loader processing unless noted otherwise in Appendix A, “Using the linkage editor and batch
loader,” on page 157. The linkage editor and batch loader cannot process program objects, extended
object modules, GOFF modules, s or z/OS UNIX files.

© Copyright IBM Corp. 1991, 2021 45

Input into the binder

Defining the primary input

The primary input, required for every binder job step, is defined on a DD statement with the ddname
SYSLIN. Primary input can be:

« A sequential data set

« A member of a partitioned data set (PDS)

« A member of a partitioned data set extended (PDSE)

« Concatenated sequential data sets, or members of partitioned data sets or PDSEs, or a combination
« A z/OS UNIX file.

The primary data set can contain object modules, control statements, load modules and program objects.
All modules and control statements are processed sequentially and their order determines the order

of binder processing. The order of the sections after processing, however, might not match the input
sequence.

The following examples show the statements needed to define input to the binder.

Object modules, load modules and program objects
Primary input to the binder can be one or more object modules, load modules or program objects. The
modules are created and passed by a previous job step or created in a separate job.
As a member of a partitioned data set or PDSE

You can use a module in a partitioned data set or PDSE as primary input to the binder by specifying its

data set name and member name on the SYSLIN DD statement. In the following example, the member
named TAXCOMP in the object module library USER.LIBROUT is the primary input. USER.LIBROUT is a
cataloged data set:

//SYSLIN DD DSNAME=USER . LIBROUT (TAXCOMP) , DISP=SHR
The library member is processed as if it were a sequential data set.
Members of partitioned data sets or PDSEs can be concatenated with other input data sets, as follows:

//SYSLIN DD DSNAME=USER.0BJMOD,DISP=SHR, . ..
// DD DSNAME=USER. LIBROUT (TAXCOMP) , DISP=SHR

Library member TAXCOMP is concatenated to data set USER.OBIMOD.

Passed from a previous job step

A module used as input can be passed from a previous job step to a binder job step in the same job (for
example, the output from the compiler is direct input to the binder). In the following example, an object
module that was created in a previous job step (STEPA) is passed to the binder job step (STEPB):

//STEPA EXEC

//SYSGO DD DSNAME=&&OBJIECT , DISP=(NEW, PASS) , . . .
//STEPB EXEC

//SYSLIN DD DSNAME=&&OBJIECT , DISP=(OLD, DELETE)

The temporary data set name &&OBJECT, used in both job steps, identifies the object module as the
output of the language processor on the SYSGO DD statement, and as the primary input to the binder on
the SYSLIN DD statement.

Created in a separate job

If the only input to the binder is an object module from a previous job, the SYSLIN DD statement contains
the information needed to locate the object module. For example:

46 z/0S: z/OS MVS Program Management: User's Guide and Reference

Input into the binder

//SYSLIN DD DSNAME=USER .0BJMOD, DISP=(OLD, DELETE)

Control statements

The primary input data set can consist solely of control statements. When the primary input is control
statements, input modules are specified on INCLUDE control statements (see “Secondary (included)
input” on page 48). The control statements can be either placed in the input stream or stored in a data
set.

In the following example, the primary input consists of control statements in the input stream:

//SYSLIN DD *
Binder Control Statements

/*

In the next example, the primary input consists of control statements stored in the member INCLUDES in
the data set USER.CTLSTMTS:

//SYSLIN DD DSNAME=USER.CTLSTMTS (INCLUDES) ,DISP=SHR, ...

In either case, the control statements can be any of those described in Chapter 7, “Binder control
statement reference,” on page 101.

Modules and control statements

The primary input to the binder can contain modules and control statements. The object modules and
control statements can be in the same data set or in different data sets, but cannot be mixed in the same
data set with load modules or program objects.

If the modules and statements are in the same data set, this data set is specified in the SYSLIN DD
statement. If the modules and statements are in different data sets, the data sets are concatenated.

The binder accepts concatenated object modules, load modules and program objects as primary input.
However, the binder does not support z/OS UNIX files as part of a concatenation. The control statements
can be defined either in the input stream or as a separate data set.

Control statements in the input stream

Control statements can be placed in the input stream and concatenated to an object module data set, as

follows:
//SYSLIN DD DSNAME=&&OBJECT, . . .
// DD *
Binder Control Statements
/*
Another method of handling control statements in the input stream is to use the DDNAME parameter, as
follows:
//SYSLIN DD DSNAME=&&OBJECT, . . .
// DD DDNAME=SYSIN
//SYSIN DD -
Binder Control Statements
/*

Note: The binder cataloged procedures use DDNAME=SYSIN for the SYSLIN DD statement to specify the
primary input data set required.

Chapter 4. Defining input to the binder 47

Input into the binder

Control statements in a separate data set

A separate data set that contains control statements can be concatenated to a data set that contains
an object module. Control statements for a frequently used procedure (for example, a series of
INCLUDE statements) can be stored permanently. In the following example, the members of data set
USER.CTLSTMTS contain binder control statements. One of the members is concatenated to data set
&&OBJECT.

//SYSLIN DD DSNAME=&&OBJECT, DISP=(OLD,DELETE), . ..
// DD DSNAME=USER.CTLSTMTS (MEDIA) ,DISP=SHR, ...

The control statements in the member named MEDIA of the data set USER.CTLSTMTS are used to
structure the resultant module.

Secondary (included) input

The INCLUDE control statement requests that the binder use additional data sets as input. These can be
any of the sequential data set types acceptable for primary input.

In addition, INCLUDE can refer to private libraries rather than sequential files. Concatenations must
contain only libraries or sequential files (including library members), not both.

The INCLUDE statement specifies the ddname of a DD statement that describes the data set to be used
as additional input. If the DD statement describes a library (partitioned data set, PDSE, or z/OS UNIX
directory) the INCLUDE statement also contains the name of each member to be used. See “INCLUDE
statement” on page 114 for the syntax of the INCLUDE statement.

When an INCLUDE control statement is encountered, the binder processes the module or modules
indicated. Figure 10 on page 49 shows the processing of an INCLUDE statement. In the illustration, the
primary input data set is a sequential data set named OBJMOD that contains an INCLUDE statement.
After processing the included data set, the binder processes the next primary input item. The arrows
indicate the flow of processing.

If an included data set also contains an INCLUDE statement, that INCLUDE is processed at the time it is
encountered, effectively nesting includes. Any number of nested INCLUDE statements are possible with
the binder. Figure 10 on page 49 demonstrates the flow of processing for single INCLUDE statements.
Note that the binder returns to the Include module after processing the included module whereas the
linkage editor does not.

48 z/0S: z/OS MVS Program Management: User's Guide and Reference

Input into the binder

Primary Input
Data Set OBJMOD

Library OBJLIB
Member MODA

Include OBJLIB {MODA)

Figure 10. Processing of one INCLUDE control statement

Figure 11 on page 49 demonstrates the flow of processing for nested INCLUDE statements.

Primary Input Sequential
Data Set SYSLIN Data Set OBJMOD
—
¥ Library OBJLIB
Member MODA
Include OBJMOD - Include OBJLIB
e
{(MODA)

Figure 11. Processing of nested INCLUDE control statements

Chapter 4. Defining input to the binder 49

Input into the binder

Including sequential data sets

Sequential data sets containing object modules or control statements, or both, can be specified by an
INCLUDE control statement. In the following example, an INCLUDE statement specifies the ddnames of
two sequential data sets to be used as additional input:

//ACCOUNTS DD DSNAME=PROJECT.ACCTROUT,DISP=SHR, ...
//INVENTRY DD DSNAME=PROJECT.INVENTRY,DISP=SHR, ...
//SYSLIN DD DSNAME=PROJECT.QTREND, ...

/ DD *

INCLUDE ACCOUNTS, INVENTRY
/*

Each ddname could have been specified on a separate INCLUDE statement. Using either method a DD
statement must be specified for each ddname.

Another method of performing the preceding example is given in “Including concatenated data sets” on

page 52.

Including UNIX Files

z/OS UNIX files can be specified directly on an INCLUDE statement, or indirectly through DD statements
that in turn reference z/OS UNIX files. See “Example 2” on page 116 for examples of both.

If you specify the UNIX file indirectly through a DD statement, you must specify an absolute (beginning
with "/").
When you specify the UNIX file indirectly, you may either put the whole path in the DD statement and

INCLUDE the DD name (such as in “Example A: Putting the whole path in the DD statement” on page
50), or use a "member syntax" in the INCLUDE statement (as in Examples B, C, and D).

Example A: Putting the whole path in the DD statement

In this example INPUT is the DD name for the file to be included. PATH= in this case specifies a whole
path which must be in quotation marks because it contains lower case letters. INPUT is then used in the
INCLUDE statement:

//INPUT DD PATH='/u/userid/hello.o', PATHDISP=(KEEP, KEEP)
//SYSLMOD DD DSN=USERID.PDSE.LOAD,DISP=SHR
//SYSLIN DD *
INCLUDE -IMPORTS, -ATTR,INPUT
NAME TEST(R)
/*

When you use "member syntax" in the INCLUDE statement, rather than putting the whole path in the DD
statement, you put a directory path in the DD statement, and then in the INCLUDE statement you specify
the file in the directory you want included. In this case, there are three rules to remember. First, the
PATH= in the DD statement must point to a directory, not a file. As before, the path should be in quotation
marks if it contains lower case letters.

Secondly, you must put information needed to locate the file within the directory in the INCLUDE
statement.

Finally, if the information in the INCLUDE statement is lower or mixed case, it must be quoted, unless
CASE=MIXED is specified as an invocation option. Examples B, C, and D show three ways to do this.

Example B: Putting a directory path in the DD statement and filename in the
INCLUDE statement
As in “Example A: Putting the whole path in the DD statement” on page 50, the same file, hello.o is

specified, but in this case, the DD name INPUT specifies what directory it is in, and the file name is
specified within parentheses in the INCLUDE statement.

//INPUT DD PATH='/u/userid/', PATHDISP=(KEEP, KEEP)
//SYSLMOD DD DSN=USERID.PDSE.LOAD,DISP=SHR

50 z/0S: z/OS MVS Program Management: User's Guide and Reference

Input into the binder

//SYSLIN DD =
INCLUDE -IMPORTS,-ATTR,INPUT('hello.o')
NAME TEST(R)

/*

The INCLUDE "member" can also contain additional directory information. This means you can specify a
directory path in the DD statement, and then a subdirectory and file stemming from that directory in the
INCLUDE statement. “Example C: Putting a directory path in the DD statement and a subdirectory path in
the INCLUDE statement” on page 51 and “Example D: Putting a directory path in the DD statement and
using dot notation in the INCLUDE statement” on page 51 illustrate this.

Example C: Putting a directory path in the DD statement and a subdirectory
path in the INCLUDE statement

In this example, hello.o is in a subdirectory, subdir. INPUT specifies the directory that subdir is in, and
the INCLUDE statement specifies the subdirectory and file name. A second file, goodbye.o is also included
that is in the main directory, not in subdir.

//INPUT DD PATH='/u/userid/', PATHDISP=(KEEP,b KEEP)
//SYSLMOD DD DSN=USERID.PDSE.LOAD,DISP=SHR
//SYSLIN DD *
INCLUDE -IMPORTS, -ATTR,INPUT('subdir/hello.o', 'goodbye.o")
NAME TEST(R)
/*

Example D: Putting a directory path in the DD statement and using dot
notation in the INCLUDE statement

As in “Example C: Putting a directory path in the DD statement and a subdirectory path in the INCLUDE
statement” on page 51, hello.o is a file in subdir, but now DD statement INPUT specifies a directory
path to sub2, which is a subdirectory within subdir. The file goodnight.o is in sub2 and it is included

by specifying its file name in the INCLUDE statement. The file hello.o is in the parent directory (subdir)
to sub2. In this case UNIX dot notation must be used show that hello.o can be found in sub2's parent
directory. For more on dot notation, see z/0S UNIX System Services User's Guide.

//INPUT DD PATH='/u/userid/subdir/sub2/',6 PATHDISP=(KEEP,6 KEEP)
//SYSLMOD DD DSN=USERID.PDSE.LOAD,DISP=SHR
//SYSLIN DD =
INCLUDE -IMPORTS,-ATTR,INPUT('../hello.o', 'goodnight.o")
NAME TEST(R)
/*

Including library members

DD statements referred to by an INCLUDE statement can define a library of files, either by pointing to a
PDS or PDSE, or by pointing to a UNIX directory. The INCLUDE statement can then specify "members"
of that library to be included. For a PDS or PDSE the member names are looked up in the data set
directories. For a UNIX path the "members" listed in the INCLUDE statement are actually names of file
within the directory. There may also be subdirectory path information attached to the file names.

Note that it is always possible to name a specific PDS or PDSE member, or UNIX file name, on the DD
statement, and show only the DD name on the INCLUDE statement. From the binder perspective this is
including sequential data.

See “Including UNIX Files” on page 50 for more information on including UNIX files.

In the following example, one member name is specified on the INCLUDE statement.

//PAYROLL DD DSNAME=PROJECT.PAYROUTS,DISP=SHR, ...
//SYSLIN DD DSNAME=&&CHECKS ,DISP=(0LD,DELETE), ...
/ DD *

INCLUDE PAYROLL (FICA)
/*

Chapter 4. Defining input to the binder 51

Input into the binder

If more than one member of a library is to be included, the INCLUDE statement specifies all the members
to be used from that library. The member names appear in parentheses following the ddname of the
library, and must not appear on the DD statement.

In the following example, an INCLUDE statement specifies two members from each of two libraries to be
used as additional input:

//PAYROLL DD DSNAME=PROJECT.PAYROUTS, DISP=SHR, ...
//ATTEND DD DSNAME=PROJECT.ATTROUTS, DISP=SHR, ...
//SYSLIN DD *

INCLUDE PAYROLL (FICA,TAX) ,ATTEND (ABSENCE,OVERTIME)
/*

Each library could have been specified on a separate INCLUDE statement. Using either method a DD
statement must be specified for each ddname.

Including concatenated data sets

Several data sets can be designated as input with one INCLUDE statement that specifies one ddname.
Additional data sets are concatenated to the data set described on the specified DD statement. There are
two types of concatenation, described separately below. With either type, you can concatenate data sets
with unlike characteristics, such as record format and record length.

Note however, that the binder does not support concatenation of z/OS UNIX files.

Sequential concatenation

This form of concatenation is used when the INCLUDE statement provides a ddname but no member
names. The concatenated data sets can be sequential files, or they can be members of partitioned
data sets with the member name included in the DD statement. Each data set or member listed in the
concatenation may contain a load module, a program object, or any combination of control statements
and object modules.

In the following example, two sequential data sets are concatenated and then specified as input with one

INCLUDE statement:
//CONCAT DD DSNAME=PROJECT.ACCTROUT,DISP=SHR, ...
// DD DSNAME=PROJECT.INVENTRY,DISP=SHR, ...
//SYSLIN DD DSNAME=PROJECT.SALES,DISP=0LD, ...
// DD *
INCLUDE CONCAT
/*

When the INCLUDE statement is recognized, the contents of the sequential data sets
PROJECT.ACCTROUT and PROJECT.INVENTRY are processed.

Library concatenation

This form of concatenation is used when the INCLUDE statement provides one or more member names.
The concatenated data sets must all be partitioned data sets without any member name included in
the DD statement. Each member referenced by the INCLUDE statement may contain a load module, a
program object, or any combination of control statements and object modules.

Members from more than one library can be designated as input with one ddname on an INCLUDE
statement. In this case, all the members are listed on the INCLUDE statement. The partitioned data sets
or PDSEs are concatenated using the ddname from the INCLUDE statement:

//CONCAT DD DSNAME=PROJECT.PAYROUTS, DISP=SHR, ...
// DD DSNAME=PROJECT.ATTROUTS, DISP=SHR, ...
//SYSLIN DD DSNAME=PROJECT.REPORT,DISP=0LD, ...

/ DD *

INCLUDE CONCAT (FICA,TAX,ABSENCE,OVERTIME)
/*

52 z/0S: z/OS MVS Program Management: User's Guide and Reference

Input into the binder

When the INCLUDE statement is read, the two libraries PROJECT.PAYROUTS and PROJECT.ATTROUTS are
searched for the four members and the members are processed as input. Library directories are searched
in the order of library appearance in the JCL.

Resolving external references

You can request that the binder automatically search libraries to resolve external references that were not
resolved during primary and secondary input processing. The binder can also process unresolved external
references found in modules from additional data sources.

Note: The following discussion of automatic library call services does not apply to unresolved weak
external references. They are left unresolved unless resolved to external symbols defined by modules
included in the process of resolving other external references.

There are three ways to obtain automatic library call:

1. By providing AUTOCALL control statements. This is called incremental autocall and is processed at the
time the control statement is encountered, using a source specified on the statement.

2. By providing LIBRARY control statements which specify sources to resolve references. Processing for
these statements is deferred until all primary and secondary input sources have been exhausted.

3. By default if unresolved references remain at the end of the processing. The SYSLIB DD is used for this
autocall.

There are also two ways to suppress automatic library call processing;:

1. By providing an NCAL (or NOCALL) invocation option. This suppresses all automatic library call
processing.

2. By providing LIBRARY control statements which specify names of external references that should not
be resolved by automatic library call.

When you have requested automatic library call, the binder searches the directory of the automatic call
library for an entry that matches the unresolved external reference. When a match is found, the entire
member is processed as input to the binder.

Automatic library call can resolve an external reference when:

« The external reference is a member name or an alias of a module in the call library, AND

« The external reference is defined as an external name in the external symbol dictionary of a module
contained in that member.

If an unresolved external reference is a member name or an alias in the library, but is not an external
name in that member, the member is processed but the external reference remains unresolved unless it is
subsequently defined.

When resolving external references, the binder searches the call library defined on the SYSLIB DD
statement. The call library can contain program objects, load modules, or object modules and control
statements (except INCLUDE, LIBRARY, and NAME).

Modules from libraries other than the SYSLIB call library can be searched by the binder as directed by
the LIBRARY control statement. The library specified in the control statement is searched for member
names that match specific external references that are unresolved at the end of input processing. If any
unresolved references are found in the modules located by automatic library call, they are resolved by
another search of the library. Any external references not specified on a LIBRARY control statement are
resolved from the library defined on the SYSLIB DD statement.

To prevent the binder from automatically searching call libraries, use either the LIBRARY statement for
selected unresolved external references, or the NCAL option on the EXEC statement for all unresolved
external references. See “Directing external references to a specific library” on page 56 for a discussion
of the LIBRARY control statement and the NCAL option.

Chapter 4. Defining input to the binder 53

Input into the binder

Attribute mismatches: At the end of input processing, the binder will diagnose mismatches in the
XPLINK attribute, 64-bit addressing mode, and the signature fields between caller and callee. A mismatch
is indicated by a severity code 8 error message.

Incremental autocall

The autocall phase can be invoked multiple times. Incremental autocall can be triggered at any point
during primary or secondary input processing by the AUTOCALL control statement (or equivalent API call).

The library name from the autocall request will be used in the same way as SYSLIB is used in standard
(final) autocall. The following functions of final autocall will not take place during incremental autocall:

 Processing of LIBRARY control statements or SETL API requests
RES processing (see section 4.3.1)

C Renaming logic

- Invocation of the INTFVAL exit

 Determination of Imports and Exports

- Error messages relating to unresolved references.

Autocall with C370lib data sets

The binder supports autocall from both C370lib data sets and z/OS UNIX archive libraries. A C370lib

is created by the C/C++ Object Library Utility (C370LIB or EDCLIB). It is an object module library

that contains a special member named @@DC370% or @@DC390$%. This special member is used as a
replacement for the system directory in the autocall process to perform matches on long symbol names.
In addition it preserves certain additional symbol attributes that cannot be saved in a standard MVS
object library directory entry. In some cases these attributes are used by the binder to select among
variant routines with matching names (see “Autocall matching for C370LIB and archive libraries ” on page
55.)

For each library in the SYSLIB concatenation containing the special member @@DC370$ or @@DC390$%,
the names in the special member take precedence over the regular directory entries for that library.

For example given a SYSLIB concatenation

PDSE
PDS1 (with @@DC370$ member)
PDS2

the actual search order would be:

PDSE directory names
names from @@DC370$ in PDS1
PDS1 directory names
PDS2 directory names

Note: @@DC370% and @@DC390% members are ignored during INCLUDE processing. Only member or
alias names in the PDS or PDSE directory can be used to resolve member names listed on an INCLUDE
statement.

Autocall with archive libraries

The binder also supports autocall from z/OS UNIX archive libraries. These archive libraries may contain
members that are object files -- in OBJ, XOBJ and GOFF format and with special directory information
similar to that contained in C370LIB object libraries. They may also contain members which are side files
(of IMPORT control statements), or other files of control statements.

Archive libraries are created by the UNIX System Services ar command. Like C370LIBs, they may
contain attributes used by the binder to select among variant routines with matching names (see
“Autocall matching for C370LIB and archive libraries ” on page 55). Unlike C370LIBs, archives cannot be
concatenated.

54 z/0S: z/OS MVS Program Management: User's Guide and Reference

Input into the binder

Note: Archive libraries cannot be used as the target for INCLUDE statements.

While the ar command is typically used to create archive libraries of object files, it can also be used to
create archive libraries of non-object files, or archive libraries containing a combination of object files and
non-object files. In addition to processing archive library object file members during autocall, the binder
can also process certain non-object file archive library members. Those members must have the following
characteristics:

« Members that are side files (containing IMPORT control statements). To be recognized, an IMPORT
statement must be the very first statement in the file, in the format produced by the binder when it
writes to SYSDEFSD.

- Members that are files specifically identified as containing binder control statements. To be recognized,
the first statement must contain the string "*!" in the first 2 columns, followed by the string "IEWBIND
INCLUDE". These two strings may be separated by blanks, but must be contained in a single statement.

For the binder to process these non-object files, one such file must be positioned as the very first member
of the archive library (excluding the symbol table member, __.SYMDEF). The binder then processes that
first member as if it had been explicitly included as binder input, and then includes any other such
members that it can recognize in that archive library. The following additional points should be noted:

- This processing is performed only during autocall processing of an archive library and only when there
are still unresolved symbols.

« If the archive library also contains members that are object files, it is still processed to attempt to
resolve symbols using those object file members. If the archive library contains neither object file
members nor non-object file members with the characteristics described here, the binder reports an
error when attempting to process that archive library.

« As is the case for object files, these non-object files must be composed of statements that are exactly
80 bytes long, with no newline terminator.

« Processing of non-object files during autocall does not change the binder precedence for resolving
symbols. Just as when a side file is explicitly included, the IMPORT information will only be used to
resolve a symbol dynamically if it is still unresolved after all static resolution is complete.

See z/0S UNIX System Services Command Reference for more information about using the ar utility to
create archive libraries and how to position members within them.

Autocall matching for C370LIB and archive libraries

C370LIB data sets and archive libraries contain special directory information stored by the EDCLIB
procedure and ar command respectively. Recent versions of these programs supply attribute information
about the object files in the libraries, and support multiple copies of the same program in a single library
with variant attribute informnation.

The binder uses some of the attribute information to choose among the variant object files. In priority
order, the binder will attempt to match a called program's attributes with those declared by the caller
based on:

1. 64-bit execution mode
2. Use of XPLINK linkage
3. Writable static

Searching the link pack area

When the binder is invoked for the loader function at entry IEWBLDGO, external references can be
resolved to module names in the system link pack area. The link pack area is searched if the RES option is
in effect. If you use the NORES option, the binder suppresses the search.

When the RES option is in effect, the library search order is:

1. Special libraries defined by the LIBRARY control statement.
2. System link pack area.

Chapter 4. Defining input to the binder 55

Input into the binder

3. Automatic call libraries defined by the SYSLIB DD statement.

Dynamic symbol resolution

After final autocall processing is complete, if the DYNAM(DLL) option is in effect, the binder will attempt
dynamic resolution of those symbols still unresolved. Unresolved symbols are eligible for dynamic
resolution if they have a scope of import/export. Symbols on IMPORT control statements are treated as
definitions, and cause a matching unresolved symbol to be considered dynamically rather than statically
resolved. A dynamically resolved symbol causes an entry in the binder class B_IMPEXP to be created. The
binder does not issue unresolved symbol messages for symbols that are to be dynamically resolved.

Specifying automatic call libraries

If automatic library call is requested, the call library must be a partitioned data set or PDSE described by
a DD statement with a ddname of SYSLIB. Details concerning logical record lengths and record formats for
SYSLIB libraries are given in “SYSLIB DD statement” on page 38. Call libraries can be concatenated.

Call libraries

Most compilers have their own automatic call libraries, which can contain input/output, data conversion,
or other special routines needed to complete a module. Other products provide assembler and compiler
preprocessors that generate calls to such routines in your program. You and your organization can provide
additional libraries. When an object module is created, the assembler or compiler creates an external
reference for these special routines. The appropriate library must be defined when an object module
produced by a particular assembler or compiler is bound; the binder resolves the references from this
library.

See the appropriate user's guide for the name of the call library.

In the following example, a Fortran object module created in STEPA is bound in STEPB, and the Fortran
automatic call library is used to resolve external references:

//STEPA EXEC

//SYS0B3 DD DSNAME=&&OBIMOD , DISP=(NEW, PASS) , . . .
//STEPB EXEC

//SYSLIN DD DSNAME=&&OBIMOD , DISP=(OLD, DELETE)
//SYSLIB DD DSNAME=SYS1 . VSF2FORT, DISP=SHR

Concatenation of call libraries

Call libraries from various sources can be concatenated. When concatenating libraries to define input to
the binder, you can combine libraries containing object modules, load modules, program objects, and
control statements.

If object modules from different system processors are to be bound to form one program object or load
module, the call library for each must be defined. This is accomplished by concatenating the additional
call libraries to the library defined on the SYSLIB DD statement. In the following example, a Fortran object
module and a COBOL object module are to be bound. The two call libraries are concatenated as follows:

//SYSLIB DD DSNAME=SYS1.VSF2FORT,DISP=SHR
// DD DSNAME=SYS1.COBLIB,DISP=SHR

Libraries typically are cataloged. No unit or volume information is needed.

Directing external references to a specific library

The LIBRARY control statement can be used to direct the binder to search a library other than that
specified in the SYSLIB DD statement. This method resolves only external references listed on the
LIBRARY statement, except that if the LIBRARY statement points to a library without naming any specific
symbols, that library can be used to resolve any symbols not listed in other LIBRARY statements. All other
unresolved external references are resolved from the library in the SYSLIB DD statement.

56 z/0S: z/OS MVS Program Management: User's Guide and Reference

Input into the binder

The LIBRARY statement can also be used to specify external references that should not be resolved from
the automatic call library. The LIBRARY statement specifies the duration of the unresolved condition:
either during the current binder job step, called restricted no-call; or during this or any subsequent binder
job step, called never-call.

Examples of each use of the LIBRARY statement follow. The syntax of the LIBRARY statement is shown in
“LIBRARY statement” on page 117.

Additional call libraries

If the additional libraries are intended to resolve specific references, the LIBRARY statement must
contain the ddname of a DD statement describing the library. The LIBRARY statement also contains,

in parentheses, the external references to be resolved from the library; that is, the names of the members
to be used from the library. If the unresolved external reference is not a member name in the specified
library, no attempt is made to resolve it from SYSLIB or LPA, and the reference remains unresolved unless
subsequently defined.

For example, two modules (DATE and TIME) from a system call library have been rewritten. The new
modules are to be tested with the calling modules before they replace the old modules. Because the
binder would otherwise search the system call library (which is needed for other modules), a LIBRARY
statement is used, as follows:

//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR
//TESTLIB DD DSNAME=USER.TESTLIB,DISP=SHR, ...
//SYSLIN DD DSNAME=PROJECT.ACCTROUT, ...
// DD *

LIBRARY TESTLIB(DATE,TIME)
/*

Two external references, DATE and TIME, are resolved from the library described on the TESTLIB DD
statement. All other unresolved external references are resolved from the library described on the SYSLIB
DD statement.

Note: If a specified reference cannot be found in the designated library, it remains unresolved. No
attempt will be made to resolve it from SYSLIB.

Preventing external references from being resolved

You can use the LIBRARY statement to specify those external references in the output module for which
there is no library search during the current binder job step. To do this, specify the external references

in parentheses without specifying a ddname. The references remain unresolved, but the binder can mark
the module as executable, depending upon the value specified for the LET option.

For example, a program contains references to two large modules that are called from the automatic call
library. One of the modules has been tested and corrected; the other is tested in this job step. Rather than
execute the tested module again, the restricted no-call option is used to prevent automatic library call
from processing the module as follows:

// EXEC PGM=IEWBLINK, PARM=LET
//SYSLIB DD DSNAME=PROJECT.PVTPROG, DISP=SHR
7/SYSLIN DD DSNAME=&&PAYROL,, . ..
// DD *
LIBRARY (OVERTIME)
/*

As a result, the external reference to OVERTIME is not resolved.

Never-call option

You can use the never-call option to specify external references that are not to be resolved by automatic
library call during this or any subsequent binder job step. To do this, put an asterisk before the external
references in parentheses. The references remain unresolved but the binder marks the module as
executable.

Chapter 4. Defining input to the binder 57

Input into the binder

For example, a certain part of a program is never executed, but it contains an external reference to a
large module (CITYTAX) which is no longer used by this program. The module is in a call library needed
to resolve other references. Rather than take up storage for a module that is never used, the never-call
option is specified, as follows:

// EXEC PGM=IEWBLINK, PARM=LET
//SYSLIB DD DSNAME=PROJECT.PVTPROG, DISP=SHR
7/SYSLIN DD DSNAME=PROJECT.TAXROUT,DISP=0LD, ...
// DD *

LIBRARY *(CITYTAX)
/*

When program TAXROUT is bound, the external reference to CITYTAX is not resolved. If the module
is subsequently rebound, CITYTAX will remain unresolved unless it is bound with another module that
requires CITYTAX.

NCAL option: Negating the automatic library call

When the NCAL option is specified, no automatic library call occurs to resolve external references that
are unresolved after input processing. The NCAL option is similar to the restricted no-call option on

the LIBRARY statement, except that the NCAL option negates automatic library call for all unresolved
external references and restricted no-call negates automatic library call for selected unresolved external
references. With NCAL, all external references that are unresolved after input processing is finished
remain unresolved. The module is or is not marked executable depending on the value specified for the
LET option.

The NCAL option is a special processing parameter that is specified on the EXEC statement as described
in “CALL: Automatic library call option” on page 77.

Renaming

Binder renaming logic occurs when all possible name resolution has been performed on the original
names. It allows the conversion of long mixed case names from XOBJ or GOFF object modules to short
uppercase names and will redrive the autocall process. Renaming logic applies only to nonimported,
renameable function references that are still unresolved and consists of the following:

1. The RENAME control statement allows users to control the renaming of specific symbols, as they could
with the prelinker.

2. Standard C/C++ library functions will be renamed to the names appearing in the SCEELKED static bind
library. The mappings are those defined by module EDCRNLST. If the binder is not able to locate and
load this module, an informational message will be issued.

3. If UPCASE=YES is in effect, renaming will be performed approximately according to the rules used by
the prelinker.

See “UPCASE: UPCASE option” on page 99 for more information.

58 z/0S: z/OS MVS Program Management: User's Guide and Reference

Editing sections

Chapter 5. Editing data within a program module

The binder can perform editing services either automatically or as directed by you with control
statements. These editing capabilities allow you to modify programs on a section basis, so you can modify
a section within a module without having to recompile the entire source program.

The editing capabilities let you modify either an entire section or external symbols within a section.
Sections can be deleted, replaced, or arranged in sequence; external symbols can be deleted or changed.
See “External symbols” on page 16 for an explanation of external symbols.

Any editing service is requested in reference to an input module. The resulting output program module
reflects the request; no actual change, deletion, or replacement is made to the input module. The
requested alterations are used to control binder processing, as shown in Figure 12 on page 59.

Note: This topic refers to binder processing. These concepts apply equally to linkage editor and batch
loader processing unless noted otherwise in Appendix A, “Using the linkage editor and batch loader,” on
page 157. The linkage editor and batch loader do not process program objects.

Input Modules JCL and Control Statements Output Program Module
MODA1 MODA1A2

CSECTA ']—> CSECT1

/ISYSLMOD DD DSN=PROJECT.NEWLIB(MODA1A2),...

MODA2 //IMODATWO DD DSN=MODA?2,... CSECT2
/ISYSLIN DD DSN=MODAT,... CSECT3
CSECT1 I DD *
ENTRY CSECT3
CSECT2 REPLACE CSECT2(CSECTA)

INCLUDE MODATWO
CSECT3 .

Figure 12. Editing a module

Editing conventions

When you request editing services, you should follow certain conventions to ensure that the specified
modification is processed correctly.

These conventions concern the following items:
« Entry points for the new module

- Placement of control statements

« Identical old and new symbols.

Entry points

Each time the binder reprocesses a program module, the entry point for the output module must be
specified in one of the following three ways (in an order of precedence from the highest to the lowest):

- The ENTRY control statement or EP option specified on a SETOPT control statement.

« An entry point specified as an EP option in the PARM field of an EXEC statement or in a file processed as
a result of the OPTIONS option in the PARM field.

« Through an assembler- or compiler-produced END statement of an input object module if one is
present. If multiple entry point nominations are encountered, the first one is used. The entry point
specified on the END statement of one object module can be defined in a different object module if it is
specified as an external reference in the first module.

© Copyright IBM Corp. 1991, 2021 59

Editing sections

If none of the above is present, the entry point defaults to either CEESTART if DYNAM=DLL and CEESTART
exists, or the first byte of the first control section in the program. If the module contains multiple text
classes and an entry point is not specified, the results are not predictable.

The entry point assigned must be defined as an external name within the resulting program object or load
module.

Placement of control statements

Unless the -IMMED option is specified, the control statement (such as CHANGE or REPLACE) used to
specify an editing service must immediately precede either the module to be modified or the INCLUDE
statement that specifies the module. If an INCLUDE statement specifies several modules, the CHANGE
or REPLACE statement applies only to the first module included. If the -IMMED option is specified, the
control statement must be placed somewhere following the module to be modified or the INCLUDE
statement that specifies the module.

Identical old and new symbols

The same symbol should not appear as both an old external symbol and a new external symbol in one
binder run. If a section is replaced by another section with the same name, the binder handles this
automatically (see “Automatic replacement” on page 61 for more information).

Changing external symbols

You can change an external symbol to a new symbol while processing an input module. External
references and address constants within the module automatically refer to the new symbol. External
references from other modules to a changed external symbol must be changed with separate control
statements.

Both the old and the new symbols are specified on either a CHANGE control statement or a REPLACE
control statement. The use of the old symbol within the module determines whether the new symbol
becomes a section name, an entry name, or an external reference.

Using the CHANGE statement

The CHANGE control statement changes a section name, a common section name, an entry name, an
external or weak external reference, or a pseudoregister.

The CHANGE statement must immediately precede either the input module that contains the external
symbol to be changed, or the INCLUDE statement that specifies the input module. The scope of the
CHANGE statement is the immediately following module.

If a CHANGE statement appears in a data set included from an automatic call library and is not
immediately followed by an object module in the same data set, the request for the change is ignored.

See “CHANGE statement” on page 107 for the specific information on using the CHANGE control
statement.

Example of changing external symbols

In the following example, assume that SUBONE is defined as an external reference in the input program
module. A CHANGE statement is used to change the external reference to NEWMOD as shown in Figure
13 on page 61.

60 z/0S: z/OS MVS Program Management: User's Guide and Reference

Editing sections

Input Modules JCL and Control Statements Output Program Module
MAINROUT MAINROUT
BEGIN ENTRY MAINEP ENTRY
GALL SUBONE CALL NEWMOD

#SYSLMOD DD DSN=PROJECT.PVTLIB, ...
H#SYSLIN DD *
: ENTRY MAINEP i
CALL SUBONE CHANGE SUBONE(NEWMOD) BEGIN{MAINEP} |CALL NEWWMOD
: —» INCLUDE SYSLMOD{MAINROUT)
NAME MAINROUT(R)
r*

CALL SUBONE CALL NEWMOD

Figure 13. Changing an external reference and an entry point

In the program module MAINROUT, every reference to SUBONE is changed to NEWMOD. The INCLUDE
statement specifies the ddname SYSLMOD, allowing the library to be used both as the input and the
output module library.

More than one change can be specified on the same control statement. If, in the same example, the entry
point is also to be changed, the two changes can be specified at once (see Figure 13 on page 61).

Because the main entry point name is changed from BEGIN to MAINEP, you must use the ENTRY
statement to change the library directory entry for the module to reflect the new name of the entry
point.

Replacing sections

An entire section can be replaced with a new section. Sections can be replaced either automatically or
with a REPLACE control statement. Automatic replacement acts upon all input modules; the REPLACE
statement acts only upon the module that follows it.

Note:

1. Any CSECT identification records (IDR) associated with a particular section are also replaced.

2. For assembler language programmers only: When some but not all sections of a separately
assembled module are to be replaced, the binder causes A-type address constants that refer to a
deleted symbol to be incorrectly resolved unless the entry name is at the same displacement from
the origin in both the old and the new section. If all sections of a separately assembled module are
replaced, no restrictions apply.

Automatic replacement

Sections are automatically replaced if both the old and the new section have the same name. The first
of the identically named sections processed by the binder is made a part of the output module. All
subsequent sections with that name are ignored; external references to identically named sections are
resolved with respect to the first one processed. Therefore, to cause automatic replacement, the new
section must have the same name as the section to be replaced, and must be processed before the old
section.

Chapter 5. Editing data within a program module 61

Editing sections

Attention: Automatic replacement applies to duplicate section names only. If duplicate entry
points exist in sections with different names, a REPLACE control statement must be used to
specify the entry point name.

Example 1: Object module with two sections

An object module contains two sections, READ and WRITE; member INOUT of library PROJECT.PVTLIB
also contains a section WRITE.

//SYSLMOD DD DSNAME=PROJECT.PVTLIB,DISP=0LD
//SYSLIN DD *

Object Deck for READ
Object Deck for WRITE

ENTRY READIN
INCLUDE SYSLMOD (INOUT)
NAME INOUT(R)

/*

The output module contains the new READ section, the replacement WRITE section, and all remaining
sections from INOUT.

Example 2: Large program module with many sections

A large module named PAYROLL, originally written in COBOL, contains many sections. Two sections, FICA
and STATETAX, were recompiled and passed to the binder job step in the &&OBJECT data set. Then, by
including the &&OBJECT data set before the program module PAYROLL (a member of the program library
PROJECT.LIB001), the modified sections automatically replace the identically named sections. See Figure
14 on page 63.

62 z/0S: z/OS MVS Program Management: User's Guide and Reference

Editing sections

Input Modules JCL and Control Statements Qutput Program Module
R&OBJECT LIBOO2
FICA (PAYROLL)
{new)
FICA
STATETAX {new)
{new)
#SYSLMOD DD DSN=PROJECTLIB002{PAYROLL),... STATETAX
LIBOO1 H#3YSLIB DD DSN=8YS1 VSCLLIBDISP=SHR (new)
{PAYROLL) » H#OLDLAOD DD DSN=PROJECTLIBOO1,. ..
—— — | —* /SYSLIN DD DSN=&ZOBJECT,DISP={(OLDDELETE) MAINROUT
MAINROUT i DD~
INCLUDE OLDLOAD{PAYROLL)
ENTRY INITH OVERTIME
OVERTIME I
FEDTAX
FICA
{old)
ILLACC
STATETAX
{old)
|] YVAKTION
FEDTAX
ILLACC
VAKTION

Figure 14. Automatic replacement of sections

The output module contains the modified FICA and STATETAX sections and the rest of the sections

from the old PAYROLL module. The main entry point is INITZ1, and the output module is placed in

a library named PROJECT.LIB002. The COBOL automatic call library is used to resolve any external
references that might be unresolved after the SYSLIN data sets are processed. The new module is named
PAYROLL because PAYROLL is specified as the member name on the SYSLMOD DD statement and was not
overidden by a NAME control statement.

Using the REPLACE statement to replace sections and named common areas

The REPLACE statement is used to replace sections and named common areas (also called common
sections) by providing old and new section names. The name of the old section appears first, followed by
the name of the new section in parentheses.

The scope of the REPLACE statement is the immediately following module, unless the -IMMED option

is used. The REPLACE statement must precede either the input module that contains the section to be
replaced, or the INCLUDE statement that specifies the input module. The replacing section can be either
before or after the replaced section in the binder input. If a REPLACE statement appears in a data set
included from an automatic call library and is not immediately followed by an object module in the same
data set, the request is ignored.

Chapter 5. Editing data within a program module 63

Editing sections

If the -IMMED option is used with REPLACE, then the REPLACE operates against any sections that
have already been included as part of the current bind operation. The module being built is searched
immediately for a section name matching the specified old section name.

An external reference to the old section (or area) from within the same input module is resolved to the
new section. An external reference to the old section from any other module becomes an unresolved
external reference unless one of the following occurs:

- The external reference to the old section is changed to the new section with a separate CHANGE control
statement.

« The same entry name appears in the new section or in some other section in the binder input.

In the following example, the REPLACE statement is used to replace one section with another of a
different name. Assume that the old section SEARCH is in library member TBLESRCH, and that the new
section BINSRCH is in the data set &&OBJECT, which was passed from a previous step as shown in Figure
15 on page 64.

Input Modules JCL and Control Statements Output Program Module
&&OBJECT

BINSRCH
ASYSLMOD DD DSNAME=USER SRCHRTN DISP=0LD

A#SYSLIN DD DSNAME=&&OBJECTDISP=(OLD DELETE}
i DD *

ENTRY READIN

REPLACE SEARCH(BINSRCH)

TBLESRCH INCLUDE SYSLMOD(TBLESRCH) TBLESRCH
— | NAME TBLESRCH(R
READIN ENTRY p R) READIN ENTRY
CALL SEARCH - CALL BINSRCH
SEARCH BINSRCH

Figure 15. Replacing a section with the REPLACE control statement

The output module contains BINSRCH instead of SEARCH; any references to SEARCH within the module
refer to BINSRCH. Any external references to SEARCH from other modules will not be resolved to
BINSRCH.

See “REPLACE statement” on page 127 for more information on using the REPLACE statement.

Deleting external symbols

The REPLACE statement can be used to delete an external symbol. The external symbol can be a named
section, a named common area, an entry point, a strong or weak external reference, or a pseudoregister.
The REPLACE statement must immediately precede either the module in the input data set that contains
the external symbol to be deleted or the INCLUDE statement in the job stream that specifies the module.
Only one symbol appears on the REPLACE statement; the appropriate deletion is made depending on how
the symbol is defined in the module.

If the symbol is a section name, the entire section is deleted. The section name is deleted from the
external symbol dictionary only if no address constants refer to the name from within the same input

64 z/0S: z/OS MVS Program Management: User's Guide and Reference

Editing sections

module. If an address constant does refer to it, the section name is changed to an external reference. Any
CSECT identification data associated with that section is also deleted.

The preceding is also true of an entry name to be deleted. Any references to it from within the input
module cause the entry name to be changed to an external reference.

For external references and pseudoregisters, the symbol is deleted only if no RLD contains references to
the ESD entry to be deleted.

These editor-supplied external references, unless resolved with other input modules, cause the binder
to attempt to resolve them from the automatic call library. Also, the deletion of an external symbol in
an input module might cause external references from other input modules to be unresolved. Either
condition can cause the output module to be marked not executable.

If you delete a section that contains any unresolved external references, those references are removed
from the external symbol dictionary.

In the example shown in Figure 16 on page 65, the section CODER is deleted. If no address constants
refer to CODER from other sections in the module, the section name is also deleted. If address constants
refer to CODER, the name is retained as an external reference.

See “REPLACE statement” on page 127 for more information on using the REPLACE statement.

Input Modules JCL and Control Statements Output Program Module
CODEROUT CODEROUT
ENCODE ENCODE

/SYSLMOD DD DSN=PROJECT.PVTLIB,DISP=0OLD
HBYSLIN DD *

CODER

ENTRY STARTA DECODE
REPLACE CODER
DECODE — INCLUDE SYSLMOD{CODEROUT)
NAME CODEROUT(R)
,l,"*

Figure 16. Deleting a section

Ordering sections or named common areas

The sequence of sections or named common areas in an output module can be specified by using the
ORDER control statement.

Normally, the order that sections are received during input processing are preserved in the resulting
module. Common areas are placed at the end. You can change the section order by coding one or more
ORDER control statements.

Individual sections or named common areas are arranged in the output module according to the
sequence in which they appear on the ORDER control statement. Multiple ORDER control statements can
be used in a job step. The sequence of the ORDER statements determines the sequence of the sections or
named common areas in the load module or program object.

Any sections or named common areas that are not specified on ORDER statements appear last in the
output load module in their original sequence. If a section or named common area is changed by a
CHANGE or REPLACE control statement, the new name must be used on the ORDER statement.

In the following example, ORDER statements are used to specify the sequence of five of the six sections
in an output module. A REPLACE statement is used to replace the old section, SESECTA, with the new
section, CSECTA, from the data set &&OBJECT, which was passed from a previous step. Assume that the
sections to be ordered are found in library member MAINROOT shown in Figure 17 on page 66.

Chapter 5. Editing data within a program module 65

Editing sections

Input Modules JCL and Control Statements Output Program Module
&ROBJECT MAINROOT
CSECTA 4|» 0KB MAINEP
MAINROOT SEGMTI
A H#SYSLMOD DD DSNAME=PROJECTPVTLIBDISP=0LD
CSECTB N #SYSLIN DD DSNAME=&&OBJECT DISP=(OLDDELETE)
SESECTA ORDER MAINEP{P) SEGMT1 SEG2
REPLACE SESECTA{CSECTA) CSECTA
ORDER CSECTA CSECTB{P)
MAINEP —» INCLUDE SYSLMOD{MAINROUT)
NAME MAINROUT(R}) E
I mpty space
LASTEP 4B "csECcTs
LASTEP
SEGNT1
SEG2

Figure 17. Ordering sections

In the load module MAINROOT, the sections MAINEP, SEGMT1, SEG2, CSECTA, and CSECTB are
rearranged in the output load module according to the sequence specified in the ORDER statements.

A REPLACE statement is used to replace section SESECTA with section CSECTA from data set &&OBJECT,
which was passed from a previous step. The ORDER statement refers to the new section CSECTA. Section
LASTEP appears after the other sections in the output module, because it was not included in the ORDER
statement operands. The order control statement cannot be used to order parts.

Note that empty space is inserted in the module before CSECTB. This is done to ensure page alignment
for CSECTB as specified by the "(P)" operand on the ORDER control statement (this is discussed in
“Aligning sections or named common areas on page boundaries” on page 66).

See “ORDER statement” on page 122 for specific information on using the ORDER statement.

Aligning sections or named common areas on page boundaries

You can use either the ORDER statement or the PAGE statement to place a section or named common
area on a page boundary. This allows you to operate with a lower paging rate, making more efficient use of
real storage.

The section or common area to be aligned is named on either the PAGE statement or the ORDER
statement with the P operand. If any sections in the module are to be page alignhed the module is loaded
on a page boundary. For multitext class program objects, a page-align request for a section will cause
each text element within the section to be aligned on a page boundary.

In the following example, the sections RAREUSE and MAINRT are aligned on page boundaries by PAGE
and ORDER control statements. Sections MAINRT, CSECTA, and SESECT1 are sequenced by the ORDER
control statement. Assume that each section is 3KB in length as shown in Figure 18 on page 67.

The binder places the sections MAINRT and RAREUSE on page boundaries. Sections MAINRT, CSECTA,
and SESECT1 are sequenced as specified in the ORDER statement. RAREUSE, while placed on a page
boundary, appears after the sections specified in the ORDER statement because it was not specified on
the ORDER statement.

66 z/0S: z/OS MVS Program Management: User's Guide and Reference

Input Modules

MAINROOT

CSECTA

RAREUSE

SESECTH

BOTTOM

MAINRT

Editing sections

JCL and Control Statements Output Program Module
MAINROOT
/HSYSLMOD DD DSN=USER.PRGLIB,DISP=SHR OKB MAINRT
/ISYSLIN DD *
PAGE RAREUSE 3KB
ORDER MAINRT(P),CSECTA SESECTA CSECTA
INCLUDE SYSLMOD{MAINROOT)
NAME MAINROOT(R}) 6KB
~ SESECTA
9KB
Empty space
128 RAREUSE
BOTTOM

Figure 18. Aligning sections on page boundaries

For more information on using these control statements, see “ORDER statement” on page 122 and “PAGE
statement” on page 125.

Chapter 5. Editing data within a program module 67

Editing sections

68 z/0S: z/OS MVS Program Management: User's Guide and Reference

Binder options reference

Chapter 6. Binder options reference

Guideline: This topic refers to binder processing. These concepts apply equally to linkage editor and
batch loader processing, unless noted otherwise in “Processing and attribute options reference” on page
162. The linkage editor and batch loader cannot process program objects.

This section describes the processing and attribute options that can be requested. Binder options are
specified in a number of ways. These are broadly classified as interfaces that pass option strings and
interfaces that have tailored option capabilities.

The following interfaces pass option strings:
« The PARM field of the JCL EXEC statement
- The first parameter passed to
— IEWBLINK
- IEWBLOAD
— IEWBLODI or IEWBLDGO
when using CALL, LINK, ATTACH, or XCTL from another program
« An options file identified by the OPTIONS option
« An options file specified by the DD nhame IEWPARMS
« The SETOPT control statement
« Installation option defaults
« The PARMS parameter of the IEWBIND FUNC=STARTD or FUNC=SETO call.
The following interfaces have tailored option capabilities:
« Arguments passed to the TSO LINK or LOADGO commands
« Arguments passed to the z/OS UNIX System Services c++, c89, cc, or ld commands
The OPTIONS parameter of the IEWBIND FUNC=STARTD call
« The OPTION and OPTVAL parameters of the IEWBIND FUNC=SETO call.
Note: IEWBIND is fully documented in z/0S MVS Program Management: Advanced Facilities

Many options have the possible values YES and NO. These options usually have an associated option

that begins with N or NO. For example, you can specify MAP to produce a module map, and NOMAP to
suppress production of a module map. You can also specify the MAP option as MAP=YES or MAP (YES) and
MAP=NO or MAP(NO). Table 8 on page 72 shows the associated negative option if the option's values

are YES and NO.

The options you specify, through any means, when invoking the binder, always override similar data from
included modules. For example, if you specify PARM=RENT, the resultant module is marked "reentrant"
regardless of the reusability of any included modules.

If more than one output module is produced by a single binder instance, the options specified will apply
to all output modules, unless overridden by a SETOPT control statement, or IEWBIND FUNC=SETO call.

Specifying binder options

The content and usage of the options defined in this topic applies to all interfaces listed above. For the
syntax of the tailored option facilities, see the documentation for each of those interfaces. The syntax
discussed in the following subsection applies only to the options listed as option strings.

There are special rules that apply only to JCL EXEC statements that are discussed in “Special rules for JCL
EXEC statements” on page 70.

© Copyright IBM Corp. 1991, 2021 69

Binder options reference

The following rules apply to all option's strings:

- Each option has a two to eight character option name. The name can be entered in upper, lower, or
mixed case, but is always folded to upper case for processing.

« Options are separated from each other by one or more blanks or commas, or any combination of them.

« The same option may be specified more than once, or two alternative options (such as CALL and
NOCALL) can both be specified. In all cases, the last specification encountered is used. No attempt is
made to merge values from multiple option name occurrences.

« Some options have an optional or required value associated with the name. Where present, the option
value must immediately follow the option name with no intervening blanks or commas.

— Option values can be enclosed in parentheses or single quotation marks.

— The value is separated from the option name by a single equal sign, which can be omitted if the value
is enclosed in parentheses.

« There is no support for comments before, within, or following an option string.
The syntax of the PARM field is:

PARM=(option/[,option],...)
where option can be specified as

{{option}
{option(value[,value]...)}
{option=value}
{option=(value[,value]...)}}

You can use single quotations marks, rather than parentheses, to enclose the complete options string in
the PARM field. You can use parentheses outside a complete string that is delimited by single quotation
marks, as in PARM=('option,option'). You cannot use single quotation marks outside a complete string that
is delimited by parentheses. You can enclose values in parentheses.

Binder keywords are always converted to upper case. If you only specify one option, it need not be
enclosed in parentheses or single quotation marks.

The binder bridges the limitations imposed by the JCL interpreter by allowing additional freedom in the
format of the options string. While it makes every effort to resolve explicit (and implied) syntactical and
semantic combinations in the options string, its success is very much dependent on the validity of the
string specification. Caution and adherence to the options syntax is recommended when building the
options string. Binder warning or error messages will identify any problems detected while parsing the
options string.

Options that would otherwise be set on the PARM field can also be specified in the options file. This allows
you to specify a set of binder options that might otherwise exceed the MVS PARM string length limitation
of 100 bytes. It also allows you to create one or more binding profiles that can be included at bind

time. Options are processed in order, starting with the beginning of the parm string. When you specify
OPTIONS=ddname in the PARM field, the ddname is opened and the options in that file are processed.
Processing then continues with the option following OPTIONS= in the parm string.

Special rules for JCL EXEC statements

Binder options are specified in the PARM field of the EXEC statement and must adhere to the rules for JCL
statements. Keep in mind that:

« Commas cannot be used within the PARM value unless it is enclosed in parentheses or single quotation
marks.

« Blanks and equal signs cannot be used within the value unless they are within a string enclosed in
quotation marks.

70 z/0S: z/OS MVS Program Management: User's Guide and Reference

Binder options reference

« Nested parentheses are allowed only as complete subparameters separated by commas within a
parenthesized value.

Because commas or blanks are required to specify more than one binder option, the PARM string must
be enclosed in either single quotation marks or parentheses if multiple options are being passed to the
binder.

Because parentheses or an equal sigh must be adjacent to an option name to specify an option value,
single quotation marks must be used if options with values are being passed to the binder.

One approach to these restrictions is to enclose the entire PARM= string in single quotation marks. If this
is done, the following additional JCL rules must be honored:

« Any single quotation marks within the string (such as the quotation marks typically needed for the PATH
parameter) must be doubled.

« If the string is continued beyond the initial JCL record, provide data through column 71 to ensure that
there is not a single quotation mark in that column. Next, continue the string in column 16 of the next
record (with // in columns 1 and 2 and blanks in column 3 through 15).

Another approach to these restrictions is to enclose the entire PARM= string in parentheses and
separate the options by commas with no intervening blanks. Individual options requiring an equal sign
or parentheses are then enclosed in single quotation marks, which the binder will remove. Using this
approach, the additional JCL rules are:

« If the string is continued beyond the initial JCL record, it can be broken after any comma at or before
column 71 and continued in any column from 4 through 16 of the next record (with // in columns 1 and
2).

« If the break must occur within a quoted string, the same rule listed above must be followed, data
through column 71 with continuation in column 16.

161 714
//BIND EXEC PGM=IEWL,
// PARM='1linect=55,1ist(all) ,map,xref,options=optndd,wkspa
// ce=(400,10000)

Figure 19. Example of special rules for JCL EXEC statements

161 711
//BIND EXEC PGM=IEWL,
// PARM=('linect=55", 'list(all) "', map,xref,
// 'options=optndd', 'wkspace=(400,10000) ")

Figure 20. Example of special rules for JCL EXEC statements

Special rules for options files

The OPTIONS option can specify a DD name for a sequential file, which includes a PDS member or
concatenation of sequential files. These files must contain 80-byte records. Only columns 1 through 72
are treated as containing options. Each record is treated as a separate option string. There is no support
for continuing individual options from one record to another.

The options in the options file are processed at the time the OPTIONS option is encountered, so think of it
as inserted at the point in the options string where the OPTIONS option is found.

DD name IEWPARMS is recognized as an option file with the same characteristics except that no
OPTIONS option is needed for IEWPARMS. IEWPARMS is processed at the end of the primary option
string.

Binder options

Table 8 on page 72 briefly describes all of the PARM options available to the binder. For options with
only yes and no values, the binder provides negative options. You can either specify the negative option or
set the primary option equal to NO. These options are listed in parentheses beneath the primary option.

Chapter 6. Binder options reference 71

Binder options reference

Descriptions are for the primary options. Table 8 on page 72 also lists the default values for each option
when using either IEWBLINK or IEWBLDGO.

Most options can be set on the PARM field of the EXEC statement or on the SETOPT control statement.
Options set from the PARM field are in effect for the entire job step, whereas options set via control
statements (MODE, SETCODE, SETOPT, SETSSI) are in effect only for the module in process. Options set
on control statements override settings from the PARM field.

Certain options are designated as "environmental" options and can only be specified on the PARM field
(they cannot be specified in the options file). Environmental options include:

+ COMPAT

« EXITS

< LINECT

+ MSGLEVEL
» OPTIONS
« PRINT

« SIZE

« TERM

« TRAP

+ WKSPACE

The descriptions of all PARM options available to the binder are included in the table below.

Table 8. Summary of processing and attribute options

Option Default values Description

AC 0 Assigns an authorization code to the output
module, which determines whether the module can
use restricted system services.

ALIASES NO ALIASES(ALL) allows you to mark external symbols
as aliases when binding a module. The resultant
aliases are nonexecutable. They are simply used
for symbol resolution.

ALIGN2 (NOALIGN2) NO Specifies that a page specification causes the text
to be aligned on a 2 KB boundary within the
modaule. It has no effect on where the module is
loaded in virtual storage.

AMODE Default is the ESD Assigns an addressing mode (24, 31, 64, or ANY)
AMODE value. to the entry points in the output program module.
Specifying MIN causes the AMODE to be set to
the most restrictive AMODE value of all control
sections within the module. See “AMODE and
RMODE combinations” on page 31 for a detailed

description.

CALL (NCAL, NOCALL) YES Causes the binder to search program libraries to
resolve external references (automatic library call).

CASE UPPER Controls case sensitivity in names encountered in
modules, control ststements and options.

COMPAT MIN Specifies the compatibility level of the binder.

72 z/0S: z/OS MVS Program Management: User's Guide and Reference

Binder options reference

Table 8. Summary of processing and attribute options (continued)

Option Default values Description

COMPRESS AUTO Allows you to force compression or prevent
generation of an object that could not be
reprocessed on a level of the system earlier than
z/OS version 1 release 7.

DC (NODC) NO Causes a maximum record size of 1024 bytes to
be used for the output module. (This option is only
valid when creating load modules.)

DCBS (NODCBS) NO Allows you to specify the block size for the
SYSLMOD data set in the DCB parameter of the
SYSLMOD DD statement. (This option is only valid
when creating load modules.)

DYNAM NO Determines whether the resultant module is
enabled for dynamic binding. If enabled, the
module becomes a DLL module from which other
DLLs' imports can be resolved. Similarly, it is also
able to import symbols from other DLLs.

EDIT (NE) YES Saves modules in a format that allows them to be
rebound.

EP no default Specifies the external name to be used as the entry
point of the loaded program.

EXITS no default Specifies (one or more) exits are to be taken during
binder processing.

EXTATTR no default Specifies extended attributes for SYSLMOD when
saved in a z/OS UNIX file.

FETCHOPT NOPACK NOPRIME Specifies how a program object should be paged-
mapped (loaded) into virtual storage for execution.

FILL no default Specifies the character to be used to fill
uninitialized areas. FILL applies to program objects
only.

GID no default Specifies the group ID attribute to be set for the
SYSLMOD file.

HOBSET NO Specifies if the high order bit of each V-con is to
be set according to the AMODE of the target entry
point.

INFO NO Specifies that information about the compile dates
and PTF levels of sections within the main binder
module should be written to SYSPRINT.

LET (NOLET) 4 Specifies a severity code; the output module
is marked as not executable if a severity code
higher than the level you specified is found during
processing.

LINECT 60 Specifies the number of lines to be included on

each page of binder output listings. The minimum
supported value is 24.

Chapter 6. Binder options reference 73

Binder options reference

Table 8. Summary of processing and attribute options (continued)

Option Default values Description

LIST (NOLIST) OFF Controls the information included in the SYSPRINT
or SYSLOUT data set.

LISTPRIV OFF Lists any unnamed sections.

LONGPARM NO Indicates whether an APF authorized program can

(NOLONGPARM) be passed a parameter longer than 100 bytes from
a batch style invocation.

MAP (NOMAP) NO Produces a module map.

MAXBLK no default Specifies the maximum size of a text record in
a load module. This can avoid reblocking when
copying to a different device type at a later time.
(This option is only valid when creating load
modules.)

MODMAP NO Builds a map of the module contents in a separate
section as part of the module being bound.

MSGLEVEL 0 Limits the messages displayed to a given severity
level and higher.

NAME **GO Specifies a name to be used to identify the loaded
program to the system.

OL (NOOL) NO Brings the module into virtual storage only by using
a LOAD macro.

OPTIONS no default Embeds a data set containing binder options to be
used during the current processing.

OVLY (NOOVLY) NO Places the output program module in an overlay
structure.

PATHMODE Default allows file owner Specifies pathmode to be used when saving a

permission for read, module to a z/OS UNIX file.
write, and execute
PRINT (NOPRINT) YES Indicates that informational and diagnostic

messages are to be written to the SYSLOUT data
set for IEWBLDGO and SYSPRINT data set for
IEWBLINK.

RES (NORES)

IEWBLDGO=YES
IEWBLINK=NO

Specifies whether or not the binder should
automatically search the link pack area queue
during automatic library call. For IEWBLDGO the
default is YES, and for IEWBLINK the default is NO.

REUS NONE Specifies whether the output program module will
be refreshable, reenterable, serially reusable or
nonreusable.

RMODE Default is the ESD Assigns the residence mode (24, ANY(31), 64,

RMODE value.

SPLIT) to the output program module. Specifying
MIN causes the RMODE to be set to the most
restrictive RMODE value of all control sections
within the module segment. See “AMODE and
RMODE combinations” on page 31 for a detailed
description.

74 z/0S: z/OS MVS Program Management: User's Guide and Reference

Binder options reference

Table 8. Summary of processing and attribute options (continued)

Option Default values Description

RMODEX NONE Extensions to RMODE option. See “RMODEX:
Extended residence mode option” on page 93

SCTR NO Builds control blocks needed by the system
nucleus. Load module only.

SIGN NO Builds a digital signature for a program object.

SIZE no default Specifies the amount of virtual storage available for
binder processing and the output module buffer.
We do not recommend use of this option with the
binder.

SSI no default Specifies hexadecimal information to be placed
in the system status index; also see “SETSSI
statement” on page 130.

STORENX (NOSTORENX) NO Allows the binder to replace an executable copy of
a program module with a nonexecutable copy.

STRIPCL NO Allows the binder to remove unneeded classes
from a program object or load module.

STRIPSEC NO Allows the binder to remove unneeded sections
from a program object or load module.

SYMTRACE no default Request symbol resolution information to be
produced in SYSPRINT.

TERM (NOTERM) NO Copies the numbered binder error and warning
messages into a data set that has been defined by
a SYSTERM DD statement.

TEST (NOTEST) NO Specifies that the module is to contain symbol
tables in the format supported by TSO TEST.

TRAP ON Controls the extent of error recovery from program
checks and abends, and the techniques the binder
uses for it. The suboptions that can be specified are
ON, OFF and ABEND.

uID no default Specifies a user ID attribute to be set for the
SYSLMOD file.

UPCASE NO Indicates whether additional renaming is done
when symbols remain unresolved after the binder's
autocall process.

WKSPACE See “WKSPACE: Working Specifies the maximum amount of virtual storage
space specification available for binder processing both above and
option” on page 99. below the 16 MB line.

XCAL (NOXCAL) NO Controls whether valid exclusive references
between overlay segments should be treated as a
warning (severity 4) or error (severity 8) condition.

XREF (NOXREF) NO Produces a cross-reference table of the output

module in the diagnostic output data set.

Chapter 6. Binder options reference 75

Binder options reference

AC: Authorization code option

You can assign an authorized program facility (APF) authorization code to an output program module. It
determines whether the module can use restricted system services and resources.

Guideline: Use the EXTATTR option in additional to the AC option to set the APF flag in a z/OS UNIX file.
For example:

AC=1, EXTATTR=APF

You can assign an authorization code on the PARM field by using the AC parameter as follows:

AC=n

The authorization code n must be an integer between 0 and 255. The authorization code assigned in the
PARM field is overridden by an authorization code assigned through the SETCODE control statement. If
you do not assign an authorization code, it is set to 0 in the output program module.

A nonzero authorization code has an effect only if the program resides in an APF-authorized library
defined by your system programmer. See z/0S MVS Programming: Authorized Assembler Services Guide
for more information on APF and system integrity.

ALIASES: ALIASES option

The ALIASES option requests directory entries be created for defined symbols in a module so that those
names can be used to resolve references during autocall. Because the aliases are only used for symbol
resolution and are not executable, they are called "hidden" aliases. You can code the ALIASES option in
the PARM field as follows:

ALTIASES={NO | ALL%?

Note:

1. Hidden aliases will not be created if NO is specified, or if the ALIASES option value is defaulted. Note
that the creation of hidden aliases is also dependent on the processing level of the binder. Be sure that
the COMPAT processing option is at least PM3 for the ALIASES option to take effect.

2. This processing option is intended to enable standard system support for symbol resolution similar to
that provided by C370LIB object libraries.

3. The DESERV macro has a HIDE parameter that can be used by an application program to control
whether hidden aliases are returned on a GET_ALL request. See the DESERV macro in z/0S DFSMS
Macro Instructions for Data Sets

ALIGN2: 2KB page alignment option

When binder page-aligns sections of text, a 4KB page size is assumed. For compatibility with older
environments that used 2KB pages, if you are binding program modules that will execute on hardware
that supports 2KB pages (not System/370 or System/390°), you can request 2KB page alignment by
coding the ALIGN2 option in the PARM field of the EXEC statement. There are advantages to using 2KB
alignment for modules that are executed on System/370 or System/390, although the system loader
loads the module on a 4KB page boundary regardless of the ALIGN2 specification. Program data areas
that are aligned are easier to read in a SNAP or ABEND dump and performance-critical assembler routines
might perform better if they are aligned on 32-or 64-byte boundaries. ALIGN2 can give a smaller module
without sacrificing these advantages.

{ALIGN2 | ALIGN2=NO | NOALIGN2}

76 z/0S: z/OS MVS Program Management: User's Guide and Reference

Binder options reference

ALIGN2=NO is the default value and can be specified with the keyword NOALIGN2.

AMODE: Addressing mode option

To assign the addressing mode for all the entry points into a program module (the main entry point, its
true aliases, and all the alternate entry points), you should code the AMODE parameter as follows:

AMODE=424 | 31 | 64 | ANY | MIN}

The addressing mode must be either 24, 31, 64, ANY, or MIN. When AMODE=MIN is coded, the binder
assigns one of the other four values to the output module; it selects the most restrictive mode of all
control sections within the output module. See “Addressing and residence modes” on page 29 for more
information about AMODE and RMODE.

The addressing mode assigned in the PARM field is overridden by an addressing mode assigned in the
MODE control statement. However, the values in the PARM field override the separate addressing modes
found in the ESD data for the control sections or private code where the entry points are located.

AMODE and RMODE values are specified independently, but the values are checked for conflicts before
output processing occurs. See “AMODE and RMODE combinations” on page 31 for information on AMODE
and RMODE compatibility and the setting of default values.

The AMODE keyword can also be specified as AMOD.

CALL: Automatic library call option

During input processing AUTOCALL control statements instruct the binder to resolve external references
against a specified library.

At the end of input processing the binder performs final autocall, where libraries specified on LIBRARY
control statements and the SYSLIB DD are used to resolve any remaining external references (while
AUTOCALL and LIBRARY control statements are optional, automatic library call requires that there is a
SYSLIB DD, otherwise a severity 8 error is issued). External references that are unresolved at the end of
final autocall are treated as severity 8 errors.

You can turn this processing off by coding the option NOCALL or NCAL in the PARM field as follows:

iNCAL | NOCALL}¥

When the no automatic library include option is specified, the binder does not search any library members
to resolve external references. Unresolved external references will be treated as severity 4 errors. If this
option is specified, you do not need to use the LIBRARY statement to negate the automatic library call for
selected external references, and you do not need to supply a SYSLIB DD statement.

Unless the LET option is also specified, other errors might still cause the module to be marked not
executable.

Note: If autocall processing is disabled, references to modules in the C run-time library will not be
resolved. For example, if the SMP/E link-edit utility entry PARM subentry is not left to use the default
value and NCAL is not explicitly listed in the specified value, the binder default of CALL=YES (or the binder
installation default) is used. This can cause frequent errors when using SMP/E to install products that use
the binder. See z/0S SMFP/E Reference for more information about SMP/E utility entries and CALLLIBS.

CASE: Case control option

You can control the binder's sensitivity to case by coding the CASE option as follows:

CASE={UPPER | MIXED}

Chapter 6. Binder options reference 77

Binder options reference

The case can be either UPPER or MIXED. When CASE=MIXED is specified,

- The binder distinguishes between upper and lower case letters, treating two strings as different if their
cases do not match exactly.

- The binder does not convert any lowercase letters in names encountered in input modules, control
statements, and binder options.

Binder keywords are always converted to upper case.

CASE=UPPER is the default value, causing conversion of all lower case letters to upper case during binder
processing.

COMPAT: Binder level option

The COMPAT option allows you to specify the compatibility level of the binder. For instance, when binding
a module you can specify LKED which will partially alter the binder's behavior and its ultimate output as
if you had invoked the linkage editor. PM2 or PM3 would allow you to take advantage of the functions
supported by the newer version of program modules.

Awareness of the function provided by each option value allows you to anticipate the behavior of your
bound programs as you share them across systems that might not support the same functionality. The
functional differences are broadly discussed below for each option value.

If the output is directed to a PDS, the output module is saved as a load module regardless of the value of
COMPAT. COMPAT(LKED) will alter some of the processing.

If SYSLMOD is allocated to a PDSE or a z/OS UNIX file, the output is saved as a program object in the
format specified by the COMPAT option. If the user specified a COMPAT value that does not support the
contents of the module, binder will issue a level 12 message and fail the bind.

COMPAT=iMIN | LKED | $CURRENT | CURR%} | PM1 | PM2
| iPM3|0SV2R8|0SV2R9 | 0SV2R10 | ZOSV1R1 | ZOSV1R2}
| iPM4|Z0OSV1R3|Z0OSV1RA4%} | {ZOSVIR5 | ZOSV1R6}E | {ZOSVIR7}
| iPM5|Z0OSV1R8 | Z0OSV1R9}|{Z0SV1R10 | ZOSV1R11 | ZOSV1R12}%
| 1ZOSV1R13%|{ ZOSV2R1| ZOSV2R2| ZOSV2R3| ZOSV2R4 | ZOSV2R5}

Or

COMPAT={MIN, XX),where XX can be any value listed previously except MIN, LKED, CURRENT, and
CURR.

CURRENT or CURR
Specifies that the output is to be as defined for the current level of the binder. For the level of Program
Management support described in this version of the manual, CURRENT is the same as ZOSV2R1.

ZOSV2R1 | ZOSV2R2 | ZOSV2R3 | ZOSV2R4 | ZOSV2R5
COMPAT=Z0SV2R1 is the minimum level that supports preserving all boundary alignments
specifications coming from ESD records. ALIGNT can be used to specify boundary alignments for
both load modules and program objects without requiring the use of COMPAT(ZOSV2R1).
ZOSV1R13
COMPAT=Z0SV1R13 is the minimum level that supports conditional sequential RLDs.

78 z/0S: z/OS MVS Program Management: User's Guide and Reference

Binder options reference

ZOSV1R10 | ZOSV1R11| ZOSV1R12
COMPAT=Z0SV1R10 is the minimum level that supports saving the timestamp from compiler IDRL
records in program objects. It also supports the RLD type corresponding to the assembler QY-con. The
QY-con is a special form of QCON representing the displacement in RXY type instructions.

PM5 | ZOSV1R8 | ZOSV1R9
COMPAT=PMS5 is the minimum level that supports cross-segment references in relative immediate
instructions in program objects.

Caution: Programs bound with this option cannot be loaded, inspected, or reprocessed on any MVS
version prior to z/0S 1.8.

ZOSV1R7
COMPAT=Z0OSV1R?7 is the minimum level that supports relative/immediate instructions across
compile units or compression of non-program data.

ZOSV1R5 | ZOSVIR6
COMPAT=Z0OSV1R5 is the minimum level that can be specified if RMODE 64 has been specified by a
compiler for deferred load data segments.

PM4 | ZOSV1R3 | ZOSViR4
COMPAT=PM4 is the minimum level that can be specified if any of the following features are used:

« Input modules contain 8-byte adcons

« Any ESD record is AMODE 64

 Input contains symbol names longer than 1024, unless EDIT=NO

« Avalue of 64 is specified on the AMODE option or control statement

If COMPAT=PM4 and OVLY are both specified, COMPAT=PM4 is changed to PM1. PM4 supports all
PM3, PM2 and PM1 features.

PM3 | OSV2R8 | 0SV2R9 | 0SV2R10 | ZOSV1R1 | ZOSV1R2
In general, COMPAT=PM3 is the minimum level that can be specified if any of the following features
are used:

« Binding modules compiled using the XPLINK attribute
« DYNAM=DLL

- XOBJ format input to the binder without going through the Language Environment prelinker, or
rebinding modules containing input from such sources

« Hidden aliases (from ALIASES control statement)

» Support for both deferred load classes and merge classes with initial text (from GOFF format input
modules or data buffers passed via the binder API.)

- Language Environment-enabled programs
If COMPAT=PM3 and OVLY are both specified, COMPAT=PM3 is changed to PM1.
PM3 supports all PM2 and PM1 features.

PM2
In general, COMPAT=PM2 is the minimum level that can be specified if any of the following are used:

« User-defined classes passed in GOFF format input as well as certain other information supported
only in GOFF format

« Names (from input modules or created by control statements which cause renaming) that are longer
than 8 bytes.

« Use of RMODE=SPLIT
If OVLY is specified, COMPAT=PM2 is changed to PM1.
PM2 supports all PM1 features.

Chapter 6. Binder options reference 79

Binder options reference

PM1
This is the minimum level which supports binder program objects. In addition to old linkage editor
load module features, program object features supported here include:

« Device-independent record format
 Text length greater than 16 megabytes
e More than 32,767 external names

OVLY is supported, and will force PM1 to be used.
IN

This is the default, and indicates that the binder should select the minimum PM level that supports
the features actually in use for the current bind.

LKED
Specifies that certain binder processing options are to work in a manner compatible with the linkage
editor. Specific processing affected by this specification includes:

« AMODE/RMODE—Where conflicts exist between the AMODE or RMODE of individual entry points
or sections and the value specified in the AMODE or RMODE option, the option specification will
prevail. No warning message will be issued and the return code remains unchanged.

« REUS—If a section is encountered in a module with a lower reusability than that specified on the
REUS option, the reusability of the module is automatically downgraded. An information message is
issued and the return code remains unchanged.

This should not be thought of as a level below PM1. Since LKED does not tell the binder what format to
use when saving a program object, the binder will behave according to MIN.

(MIN,XX)
The binder should select the minimum PM compatible level that supports the features in use for the
current bind, and the level must be equal to or larger than XX.

If COMPAT is not specified, the output format used by the binder will be the same as if you had specified
COMPAT=MIN.

COMPRESS: Compression option

Use this option to compress additional data that the binder stores with the executable program. This
has no effect on program size during execution, but can reduce the disk storage required to hold it. This
option allows you to control whether the binder will attempt compression. You might want to prohibit
compression in some cases.

COMPRESS={YES | NO | AUTO}

If compression is specified with no value, it will be treated as COMPRESS=YES.

When you specify COMPRESS=YES, the binder attempts to compress the data, unless compression is
prohibited by the COMPAT setting. If COMPAT is defaulted or set to MIN, the binder will treat it as if
COMPAT=Z0OSV1R?7 is specified. If COMPAT is specified as any lower value, the COMPRESS option is
ignored and a warning message is produced.

Specifying COMPRESS=YES will result in a warning unless COMPAT is specified or can be defaulted to be at
least zOSV1R7.

If AUTO is specified or defaulted to, compression will be done only if COMPAT=zOSV1R7 or higher or
some other characteristic of the program object forces the equivalent program object level.

COMPRESS=AUTO is the default value. If the binder decides to attempt compression when either
COMPRESS=AUTO or COMPRESS=YES are specified, it will determine if a savings of at least 4096 bytes of
storage on DASD is produced. If not, the data will be not be compressed and no error or warning message
is produced. However, informational message IEW26031 is produced for COMPRESS=YES.

80 z/0S: z/OS MVS Program Management: User's Guide and Reference

Binder options reference

Note: For load modules (output to a PDS) the COMPRESS option is ignored, and no error is produced.

DC: Downward compatible option

If you have a need to restrict the program library block size to 1024 bytes you can specify that a
maximum record size of 1024 bytes be used for the program library.

Specify the downward compatible attribute by coding DC in the PARM field.

iDC | DC=NO | NODC}

DC affects only load module contents, not program objects.

Specifying the DC attribute sets the block size for the program library data set to 1024 bytes with the
following exception. For an existing data set, if the current block size is greater than 1024 bytes, the load
module is written using a maximum record size of 1024 bytes; the block size in the DSCB entry for the
data set is not changed.

DC=NO is the default value and can also be specified with the keyword NODC.

DCBS option

The DCBS option allows you to specify the block size for the SYSLMOD data set in the DCB parameter of
the SYSLMOD DD statement. If the DCBS option is specified, the existing block size for the SYSLMOD data
set can be overridden.

{DCBS | DCBS=NO | NODCBS}

If the DCBS option is specified, but no block size value is provided in the SYSLMOD DD statement, the
binder uses the maximum record size for the device. If the DCBS option is not specified, but a block size
value is provided in the DCB parameter of the SYSLMOD DD statement, the block size value is ignored.

The minimum block size for the SYSLMOD data set is 256 bytes. For an existing data set, the minimum
block size must be less than the block size in the DSCB.

The specified block size is used unless it exceeds the maximum record size for the device or it is less than
the minimum block size. In those cases, the maximum record size or minimum block size is substituted,
respectively. If DCBS is specified, each CSECT starts a new block.

The following example shows the use of the DCBS option for an IBM 3380 Direct Access Storage device:

//LKED EXEC PGM=IEWBLINK, PARM="'XREF,DCBS'
//SYSLMOD DD DSNAME=PROJECT.LOADMOD (TEST) ,DISP=(NEW,CATLG),
// DCB=(BLKSIZE=23440), ...

As a result, the binder uses a 23440-byte block size for the program.
This option is only valid when processing load modules.

DCBS=NO is the default value and can also be specified with the keyword NODCBS.

DYNAM: DYNAM option

If DYNAM(DLL) is enabled and the module contains exported symbols, the binder will build the control
structures enabling the output module to be used as a DLL. The functions or variables exported by the
DLL can be imported by DLL applications. If DYNAM(DLL) is enabled, and the module contains symbols
eligible for dynamic resolution, and these symbols match symbols on IMPORT control statements, then
the binder will build the control structures enabling the output module to execute as a DLL application. A
DLL application can use functions or variables exported by DLLs.

You can specify the DYNAM option in the PARM field as follows:

Chapter 6. Binder options reference 81

Binder options reference

DYNAM={DLL | NO?}

Note:

1. When DYNAM (DLL) is specified, a side file of IMPORT control statements might be generated by the
binder.

2. If you are using the batch interface of the binder, the IMPORT control statements are saved in the
data set specified in the SYSDEFSD ddname in your JCL. See “SYSDEFSD DD statement” on page 41.
If you are using the binder API, the side file is saved in the data set represented by the SIDEFILE
specification of the files parameter of the STARTDialog API. For more information, see z/0S MVS
Program Management: Advanced Facilities.

3. A module linked with the DYNAM(DLL) option will be saved in a PO3 format program object unless
you specify a higher COMPAT option or other features that force saving in an alternate format program
object.

4. The DYNAM option disables the RES option.

5. A module can be an exporter of functions or variables or both (a DLL). A module can also be a user of
exported functions or variables or both (a DLL application).

6. If a module is a DLL application and it is bound with DYNAM=NO and CALL=YES, and symbols
intended to be resolved dynamically have same-named symbols in autocall libraries, they will instead
be resolved statically to those symbols in the autocall libraries. If that module is later rebound
with DYNAM=DLL, those symbols already resolved statically will remain so; they will not be resolved
dynamically.

EDIT: Edit option

To prevent a module from being reprocessed by the binder or linkage editor, you can mark it as not-
editable. To assign the not-editable attribute, code NE or EDIT=NO in the PARM field.

{EDIT | NE | EDIT=NO}

EDIT is the default value.

If you use the not-editable attribute for a load module, you cannot request an EXPAND operation on the
output module. You can only use AMASPZAP 18 consecutive times.

If you use the not-editable attribute for a PM1 format program object, you cannot use the EXPAND control
statement.

If you use the not-editable attribute for a PM2 or higher format program object, there are the following
additional restrictions:

1. You cannot use the EXPAND control statement.

. You cannot run AMASPZAP against it.

. You cannot list the module with AMBLIST.

. You canot process the module with the DLLRNAME utility.
. You cannot copy the module to a PDS.

o o0 WN

. You cannot access the module using the binder APL.
7. You cannot process the module with IEWTPORT or IEWBFDA.

A PM2 or higher format program object created with the not-editable option may require much less space
on DASD. The size of the loaded program and the time taken to load the program will not change.

If you use the not-editable attribute when creating a program object which would meet the limitations
of PM3 or lower format, except that it contains symbols longer than 1024 bytes, the object will be given

82 z/0S: z/OS MVS Program Management: User's Guide and Reference

Binder options reference

execution attributes equivalent to a PM3 object. This will allow it to be executed on down-level systems.
See the “COMPAT: Binder level option” on page 78 for additional information.

EP: Entry point option

The EP option allows you to specify an external name to be used as the entry point for the program.
The EP option is overridden by the ENTRY control statement. You can specify up to 1024 characters for

the name but the JCL PARM field is limited to 100 characters and an OPTIONS data set is limited to 80
characters per option, including the "EP=".

Specify the EP option on the PARM statement as follows:

EP=name

EXITS: Specify exits to be taken option

The EXITS option allows you to specify an exit(s) to be taken during binder processing. For more
information, see z/0S MVS Program Management: Advanced Facilities.

EXITS=(exit(module-name/[,variable)),...)

where
exit

Specifies the user exit(s) to be selected. Choose one or more user exit names from INTFVAL,
MESSAGE, and SAVE.

module-name
Specifies the name of your loadable exit module
variable
Specifies an optional variable to be passed to your exit routine as follows:

For the INTFVAL exit you can specify an option string of up to 64 characters (if the string is enclosed in
quotation marks, the quotation marks are removed).

For the MESSAGE exit you can specify one numeric value that indicates the minimum severity of the

messages to be processed by the specified exit. For example, specify 4 to suppress processing of
informational messages.

EXTATTR: Specify extended attributes

The EXTATTR option allows you to set extended attributes for SYSLMOD when saved in a z/OS UNIX file.
Four extended attributes can be set:

1. APF authorization

2. PGMCNTL

3. NOSHAREAS

4. SHRLIB

EXTATTR={suboption | (suboption[,suboption]...)}

Where 'suboption' can be any of the following keywords:

APF | NOAPF | SHAREAS | NOSHAREAS | PGM | NOPGM | SHRLIB | NOSHRLIB

Chapter 6. Binder options reference 83

Binder options reference

Up to four suboptions can be given in a single EXTATTR specification. The last valid specification for each
of the four bits takes precedence. The defaults for the files are ordinarily NOAPF, SHAREAS, NOPGM and
NOSHRLIB. The binder will not attempt to change the system settings for any attribute for which the user
has not specified a value.

APF

Causes the APF authorized flag for the SYSLMOD file to be set.
NOAPF

Will cause the flag to be set off.
PGM

Will cause the program-controlled flag for the SYSLMOD file to be set.
NOPGM

Will cause the flag to be set off.
SHAREAS

Will cause the NOSHAREAS attribute flag for the SYSLMOD file to be turned off
NOSHAREAS

Means that the flag is set on
SHRLIB

Will cause the SHRLIB attribute for the SYSLMOD file to be turned on
NOSHRLIB

Will cause the SHRLIB attribute to be turned off

For further information on the extended attributes, refer to z/0S UNIX System Services Command
Reference.

FETCHOPT: Fetching mode option

The FETCHOPT option allows you to specify how a program object should be paged-mapped (loaded) into
virtual storage for execution. The syntax of the FETCHOPT option is:

FETCHOPT={ (PACK,PRIME) | (NOPACK,PRIME) | (NOPACK,NOPRIME)}?

PACK | NOPACK
Allows you to specify whether the program object is page-mapped into virtual storage on a page
or double word boundary. Specifying PACK causes the program object to be page-mapped into page-
aligned virtual storage and then moved to storage with double word alignment.

Specifying the NOPACK suboption of FETCHOPT will mark a program object as eligible to be page-
mapped into page-aligned virtual storage without a secondary move. Other characteristics of the
program, in conjunction with loading algorithms designed to optimize performance or storage usage,
may prevent this loading method from actually being used.

PRIME | NOPRIME
Allows you to specify if the program object should be completely read into virtual storage before
execution. When PRIME is coded, all of the program pages are read before program execution begins.
When NOPRIME is coded, program pages are not read until they are needed during execution.

You cannot specify the combination (PACK,NOPRIME). The defaultis (NOPACK, NOPRIME).
This option is only valid when processing program objects.

When a program object is loaded from a z/OS UNIX file, it is not page-mapped. NOPRIME is ignored and
the entire program is read in before program execution begins. Specifying the PACK option for a program
object loaded from a z/OS UNIX file results in doubleword alignment, but does not result in a secondary
move.

84 z/0S: z/OS MVS Program Management: User's Guide and Reference

Binder options reference

FILL: Fill character option

The FILL option lets you specify the character to be used to fill uninitialized areas of the program object.

FILL={byte | NONE}

The value byte (two hexadecimal digits) is used to specify a byte value that is used to fill uninitialized
areas of the program object. All of the hexadecimal (X'00'-X'FF') values are valid. For example, FILL=81
fills the area with X'81".

The FILL option has no effect on storage added by the EXPAND statement. It also has no effect on load
modules and PM1-format program objects.

GID: Specify group ID
The GID option allows you to specify the Group ID attribute to be set for the SYSLMOD file:

GID=value

where

value

A string of up to 8 alphanumeric characters that represents a group name or numeric z/OS UNIX group
id. The characters will be folded to uppercase unless 'value' is enclosed in quotation marks.

HOBSET: Set high order bit option

The HOBSET option allows you to specify if the high order bit in each four byte V-type address constant is
set according to the AMODE of the target symbol.

HOBSET={NO | YES%

YES

Specifies the high order bit in each V-type address constant is set according to the AMODE of the
target entry point. For AMODE(31) or AMODE(ANY) targets, the high order bit is set on (B'1"). If the
target is marked AMODE(64), the address constant will not be altered. For AMODE(24), the high order
bit is set off.

Note: This operation is completely reversible. On rebinding, V-cons from included program objects
revert to their original state, unless HOBSET is specified again.

NO

Specifies the high order bit in each V-type address constant is not to be set according to the AMODE of
the target entry point.

NO is the default. The bit is set to off if HOBSET is not specified from any source.

Note: A module or element loaded below 16 MB might need to operate with AMODE(31) if it receives
control from another module or element loaded above 16 MB. This allows it to access the caller's data
areas.

INFO: Info option

When the INFO option is specified, the binder produces a report listing the PTF level for all binder
sections to which maintenance has been applied. This report appears at the end of the binder SYSPRINT
or SYSLOUT data set, prior to the message summary report.

INFO=NO is the default value and can also be specified with the keyword NOINFO.

Chapter 6. Binder options reference 85

Binder options reference

1INFO | INFO=NO | NOINFO}

LET: Let execute option

Ordinarily, the binder marks an output program module as nonexecutable when an error with a severity
level of 8 or higher is encountered. You can override this by specifying a different severity level using the
LET option. The binder then marks the module as not-executable only if an error is encountered whose
severity level is higher than what you specified.

Specify the LET option by coding the PARM field as follows:

{LET=30 | 4 | 8 | 12% | NOLET%

LET=4 is the default value. Coding the NOLET keyword will cause the binder to mark the output module as
nonexecutable when an error occurs with a severity level of 4 or higher. If LET is specified without a value,
LET(8) is assumed.

If LET=4 is specified, XCAL does not need to be specified.

LINECT: Line count option

The LINECT option lets you specify the number of lines to be included on each page of binder output
listings, including header lines and blank lines. The LINECT option is coded in the PARM field as follows:

LINECT={0 | 60 | n}

The value n can be any integer between 24 and 200, or 0. If you specify 0, there are no page breaks in the
output listing. The default value is LINECT=60.

LIST: Listing option

The LIST option allows you to control the type of information included in the SYSPRINT or SYSLOUT data
set. Consult Chapter 8, “Interpreting binder listings,” on page 131 for an explanation and examples of the
various kinds of information available. Code the LIST option in the PARM field as follows:

{LIST | LIST={ALL | SUMMARY | STMT | NOIMP[ORT] | OFF} | NOLIST}?

The LIST value can be one of the following:

ALL
Produces a listing of individual function calls, the load or save summary, control statements, and
messages. Messages IEW23081 and IEW2413I are issued only if LIST=ALL.

SUMMARY
Produces a listing of the load or save summary (including processing options and module attributes),
control statements, and messages.

STMT
Produces a listing of control statements and binder messages.

NOIMPORT | NOIMP
Produces the same output as SUMMARY except IMPORT control statements are not echoed in
message IEW23221.

OFF
Produces a listing that contains only binder messages.

86 z/0S: z/OS MVS Program Management: User's Guide and Reference

Binder options reference

LIST=SUMMARY is the default value. The keyword LIST is equivalent to LIST=SUMMARY. NOLIST is
equivalent to LIST=0FF.

LONGPARM: Long parameter option

The LONGPARM option indicates whether the program supports a parameter longer than 100 bytes. This
applies mainly to programs that are invoked using a JCL EXEC statement or a z/OS UNIX EXECMVS
callable service. LONGPARM or LONGPARM=YES specifies that the program can accept a parameter string
of more than 100 bytes. In this case, an appropriate directory entry bit will be turned on. The system
checks for this attribute only when the program is being invoked with a parameter string of more than 100
bytes and the program is APF authorized. In this case, if the LONGPARM attribute is not set on, the system
fails the invocation.

Code the LONGPARM option as follows:

{LONGPARM | LONGPARM=YES | LONGPARM=NO | NOLONGPARM}

The LONGPARM value can be one of the following:

LONGPARM=YES
LONGPARM
Specifies that the program can accept a parameter string of more than 100 bytes.

LONGPARM=NO

NOLONGPARM
This is the default value. Specifies that the program can not accept a parameter string of more than
100 bytes if it is APF authorized.

LISTPRIV: List unnamed sections option

The LISTPRIV option allows you to obtain a list of unnamed (‘private code') sections. Unnamed sections
are sections that were input to the Binder with no name (that is, the name consists of all blanks). The

use of unnamed sections is not recommended (They may cause code growth on rebinding and may create
maintenance problems.) LISTPRIV is useful as a tool in locating such sections in your binds.

LISTPRIV={NO | YES | INFORM}

YES
If unnamed sections exist, a level 8 error message is generated, and a report that lists all the
unnamed sections and their origins is produced. If no unnamed sections exist, LISTPRIV has no
effect.

NO
No diagnostics or special reports is generated for unnamed sections.

NO is the default.

INFORM
If unnamed sections exist, an informational message is generated, and a report that lists all the
unnamed sections and their origins is produced.

MAP: Program module map option

The binder allows you to request a program module map by coding MAP in the PARM field as follows:

iMAP | MAP=NO | NOMAP%

Chapter 6. Binder options reference 87

Binder options reference

When the MAP option is specified, the binder produces a map of the program module in the diagnostic
data set SYSPRINT or SYSLOUT. In the case of an empty module, no program module map will be
generated. Figure 27 on page 134 contains an example of a program module map.

When a bind specifying the MAP option fails resulting in a not-executable (NX) module, a program module
map will be included in the binder listing.

MAP=NO is the default value and can also be specified with the keyword NOMAP.

MAXBLK: Maximum block size option

You can specify the maximum size of a text block within a load module by coding the MAXBLK option in
the PARM field as follows:

MAXBLK=n

The MAXBLK value n specifies the length of the text block in bytes and must be an integer between 256
and 32760. This option allows you to ensure that a load module can be copied to a device with a smaller
track size without reblocking.

If you specify value2 on the SIZE option but do not specify a MAXBLK value, MAXBLK will default to
one-half of value2. If you do not specify either value, MAXBLK defaults to the block size of the data set. If
you code the DC option, MAXBLK and SIZE are both overridden and MAXBLK is set to 1024 bytes.

We recommend that you allow the system to determine the block size for program libraries. However, if
you need to control the block size, we recommend that you use the MAXBLK option instead of the SIZE
option.

This option is only valid when binding load modules.

MODMAP: Module map option

You can build a map of the module contents in a separate section as part of the module being bound by
coding the MODMAP option in the PARM field as follows:

MODMAP={NO | LOAD | NOLOAD}%

NO
The default value.

LOAD

builds the map in a loadable class. This is supported for both program objects (all formats) and load
modules.

NOLOAD
builds the map in a noload class. This is supported only for program objects.

MSGLEVEL: Message level option

The binder allows you to limit the messages displayed to only those of a specified severity level and
higher. You specify this level by coding the MSGLEVEL option in the PARM field as follows:

MSGLEVEL=$0 | 4 | 8 | 12%

The MSGLEVEL value is a message severity level. The default value is MSGLEVEL=0.

88 z/0S: z/OS MVS Program Management: User's Guide and Reference

Binder options reference

NAME: NAME option

The NAME option allows you to specify a name to be used to identify a loaded program to the system. You
can specify the NAME option only when you are using IEWBLDGO.

You specify the NAME option on the PARM statement as follows:

NAME=name

The maximum length for the name is 8 characters.

The default value for this option is **GO.

OL: Only-loadable option

The only-loadable option lets you specify that a module can only be brought into virtual storage using a
LOAD macro instruction.

A module with the only-loadable attribute must be entered with a branch instruction or a CALL

macro instruction. If an attempt is made to enter the module with a LINK, XCTL, or ATTACH macro
instruction, the program making the attempt is terminated abnormally by the control program. (See z/0S
MVS Programming: Assembler Services Guide for information on the LINK, XCTL, and ATTACH macro
instructions.)

You specify the only-loadable option in the PARM field as follows:

0L | OL=NO | NOOL}

OL=NO0 is the default value and can also be specified with the keyword NOOL.

OPTIONS: Options option

Instead of providing all processing options in the PARM field, you can create a data set containing the
options. You specify the ddname of the data set by coding the OPTIONS option in the PARM field as
follows:

OPTIONS=ddname

ddname identifies a sequential data set of blocked or unblocked 80-byte records. Options are specified
just as they are in the PARM field, separated by commas. Option records cannot be continued. A blank
outside of a quoted string ends processing of options in that record.

The options data set can contain multiple records with individual parameter sets. It cannot contain the
OPTIONS option or any of the Environmental options (see Table 8 on page 72. Blank records are ignored.
See “Options data set” on page 38 for information on coding the DD statement that defines the options
data set.

Tip: The options file does not replace the options string, but instead treats it as if the file was inserted into
the options string at the point where the OPTIONS option appears.

OVLY: Overlay option

The OVLY option allows you to create a program module in overlay format. A program with the overlay
attribute is placed in an overlay structure as directed by binder OVERLAY control statements. The program
module cannot be refreshed, reenterable, or serially reusable. AMODE(24) and RMODE(24) are the only
valid addressing and residence options.

Chapter 6. Binder options reference 89

Binder options reference

If the overlay attribute is specified and no OVERLAY control statements are found in the binder input, the
attribute is ignored.

The overlay attribute must be specified for overlay processing. If this attribute is omitted, the OVERLAY
and INSERT statements are not considered valid, and the module is not put into overlay structure.

You specify the overlay attribute by coding OVLY in the PARM field as follows:

{0VLY | OVLY=NO | NOOVLY}

See Appendix D, “Designing and specifying overlay programs,” on page 191, for information on the design
and specification of an overlay structure.

OVLY=NO is the default value and can also be specified with the keyword NOOVLY.

Note: The OVLY option overrides any specification of the COMPAT option. That is, if you specify the
options COMPAT (COMPAT=any value) and OVLY at the same time, OVLY prevails and the module is saved
in PM1 format if the SYSLMOD data set is a PDSE. Otherwise it is saved as a load module in a PDS. For
more information on COMPAT, see “COMPAT: Binder level option” on page 78.

PATHMODE: Set z/0S UNIX file access attributes for SYSLMOD
PATHMODE is used to set z/OS UNIX files attributes for SYSLMOD.

PATHMODE=oct1,0ct2,0ct3,o0ct4

octl,oct2,0oct3,oct4
Where octl through oct4 are each are specified as an octal digit (0-7) separated by commas. Each
of these digits specifies execution values that override the permission bits set by the PATHMODE
parameter in the JCL for SYSLMOD.

The octal digit is interpreted as three bits (e.g. 5is 101) and used as follows:
octl
1..

Set user ID of process to user ID of file owner when the program is executed

A.
Set group ID of process to group ID of file owner when the program is executed

|

Keep loaded executable in storage
oct2
1..

Owner permission to read file
A,

Owner permission to write file
|

Owner permission to execute file
oct3

1..
Group permission to read file

A,
Group permission to write file

L1
Group permission to execute file

90 z/0S: z/OS MVS Program Management: User's Guide and Reference

Binder options reference

oct4
1..
Other permission to read file
A,
Other permission to write file

|
Other permission to execute file

z/0S MVS JCL Reference and z/OS UNIX System Services Command Reference have more information
on PATHMODE file access attributes.

PRINT: Diagnostic messages option

Informational and diagnostic messages are normally written to the SYSLOUT or SYSPRINT data sets. You
can turn off this feature by coding NOPRINT in the PARM field.

1PRINT | NOPRINT}

If NOPRINT is coded, the SYSLOUT and SYSPRINT data sets are not opened.

RES: Search link pack area option

During IEWBLDGO processing, the binder automatically searches the link pack area queue before
searching the SYSLIB data set. You can prevent this by coding the NORES option in the PARM field.

iRES | NORES}

NORES is the default for the bind and save entry point (IEWBLINK or its aliases). RES is the default for the
batch load entry points.

REUS: Reusability options

The REUS option allows you to specify how a program can be reused. (Reusability means that the same
copy of a program module can be used by more than one task either concurrently or one after another.)

Note that the value of the REUS option always overrides the reusability of any included load modules or
program objects.

The syntax of the REUS option is as follows:

REUS={NONE | SERIAL | RENT | REFR}

The reusability values are:

NONE
The module cannot be reused. A new copy must be brought into virtual storage for each use. NONE is
the default value.

SERIAL
The module is serially reusable. It can only be executed by one task at a time; when one task has
finished executing it another task can begin. A serially reusable module can modify its own code, but
when it is reexecuted it must initialize itself or restore any instructions or data that have been altered.

RENT
The module is reenterable. It can be executed by more than one task at a time. A task can begin
executing it before a previous task has completed execution. A reenterable module is ordinarily
expected not to modify its own code. In some cases, MVS protects the reentrant module's virtual
storage so that it cannot be modified except by a program running in key 0. These cases include

Chapter 6. Binder options reference 91

Binder options reference

programs which the system treats as having been loaded from an authorized library, and also
programs running under UNIX unless a debugging environment has been specified.

Reenterable modules are also serially reusable.

REFR
The module is refreshable. It can be replaced by a new copy during execution without changing the
sequence or results of processing. A refreshable module cannot be modified during execution.

A module can only be refreshable if all the control sections within it are refreshable. The refreshable
attribute is negated if any input modules are not refreshable. Refreshable modules are also
reenterable and serially reusable.

The refreshable attribute can be specified for any nonmodifiable module.

If REFRPROT has been specified on the SETPROG command or in parmlib member PROGxx, the
modaule is protected from modification by placing it in key 0, non-fetch protected storage, and

page protecting the whole pages. Note that debuggers, such as TSO TEST and UNIX debugging
environments, will override REFRPROT protection for particular TCBs so that they can modify module
storage in order to set breakpoints.

Alternatively, you can code a REUS option as a single keyword without a value (REUS, NOREUS, RENT,
NORENT, REFR, NOREFR). For example:

//LKED EXEC PGM=IEWBLINK,PARM='RENT,.."

REUS used as a single keyword is equivalent to REUS=SERIAL. NOREUS used as a single keyword is
equivalent to REUS=NONE. This alternative form is supported only for backward compatibility. The most
restrictive positive specification is used to set the reusability attribute. For example, specifying REFR has
the same effect as specifying REUS (REFR) and the module is marked as refreshable, reenterable, and
(serially) reusable.

If the PARM string contains both formats, the REUS (value) instance will override any reusability options
specified without values.

The binder only stores the attribute in the directory entry. It does not check whether the module is
actually reenterable or serially reusable. If the module is incorrectly marked as reenterable or reusable,
execution results are unpredictable; for example, a protection exception might occur or the program
might use another task's data.

RMODE: Residence mode option

To assign the residence mode for all the entry points into a program module, you can code the RMODE
parameter as follows:

RMODE=(rmode [,scope 1)

Or

RMODE (SPLIT)

The residence mode assigned in the PARM field is overridden by a residence mode assigned in the MODE
control statement, but overrides the accumulated residence mode found in the ESD data for the control
sections or private code in the input.

AMODE and RMODE values are specified independently, but checked for conflicts before output
processing occurs. See “AMODE and RMODE combinations” on page 31 for information on AMODE and
RMODE compatibility and the setting of default values.

The rmode can be MIN, 24, ANY, 31, or 64.

92 z/0S: z/OS MVS Program Management: User's Guide and Reference

Binder options reference

In addition to the rmode, you may optionally specify a scope. The scope determines how the residence
mode value is applied. The allowable scope values are:

INITIAL
The residence mode value is applied to all initial load classes in all segments.

When RMODE is specified, the default scope value is INITIAL.

COMPAT
The residence mode value is applied only to the initial load classes comprising the first segment (the
one that contains the main entry point).

When RMODE is unspecified, the default scope value is the same as RMODE(MIN,COMPAT).
Notes:

1. The scope may not be specified with RMODE(SPLIT).
2. When RMODEX is 64TRUE, SPLIT is the only valid value of RMODE. All other values will be ignored.

RMODE(SPLIT) specifies the program text (class B_TEXT) can be split into two class segments according
to the RMODE of each section. Rules for splitting the text are:

« If RMODE(SPLIT) is specified, the B_TEXT class of each included module is distributed between the two
class segments according to the RMODE of each section contained in the module.

« If RMODE(SPLIT) is not specified, either through the binder execution parameter or a control statement,
included text in classes B_TEXT, B_TEXT24 and B_TEXT31 are combined into B_TEXT class and loaded
into memory using the existing RMODE resolution rules. B_TEXT64 is combined into B_TEXT when
RMODE=64 or RMODEX is specified.

« If the OVLY option is specified, RMODE is reset to 24 and the split module is not produced.

« If RMODE(SPLIT) is specified, consider the HOBSET option. If you specify HOBSET, the high order bit of
each V-type address is set according to the AMODE of the called entry point.

When an RMODE(SPLIT) module is loaded, the LOAD service returns a length of zero. For additional
information on multiple segment modules, see “Creating a program object” on page 21. When you use
LOAD, the CSVQUERY service should be used with the OUTXTLST parameter to obtain information about
the address (load point) and length of each program segment. See CSVQUERY in z/0S MVS Programming:
Assembler Services Guide for more information.

The keyword RMODE can be specified as RMOD for options strings (such as IEWL PARM or options files).

RMODEX: Extended residence mode option

The primary purpose of RMODEX is to change the binder behavior for RMODE(64) ESDs. RMODE(64)
ESDs are treated as if they were RMODE(31) (RMODE(ANY)) ESDs, unless either RMODEX=64TRUE or
RMODE=64 is specified.

The RMODEX parameter syntax is as follows:

RMODEX={ NO | 64TRUE | (64TRUE,R1:R2)%}

NO
Turn off RMODEX. RMODE(64) ESDs are treated as if they were RMODE(31) ESDs, unless RMODE=64
is specified. NO is the default value and can also be specified with the keyword NORMODEX .

64TRUE
The binder will honor RMODE(64) ESDs.

R1:R2
This defines an optional RMODE mapping. This might be necessary, as the binder support of multipart
programs currently allows at most two initial load segments. Thus, when RMODEX=64TRUE is
specified and RMODE=rmode (rmode=24, ANY(31) or 64) is not, and all three kinds of RMODE ESDs
(24, ANY(31), 64) are present in the module, then one kind of RMODE ESDs must be mapped to

Chapter 6. Binder options reference 93

Binder options reference

another. By default, the binder will map RMODE(64) ESDs to RMODE(31) ESDs in this case. This can
be overridden by an optional mapping specification following the 64TRUE keyword.

Two mappings are supported:

1. RMODEX=(64TRUE,64:31), which means RMODE(64) ESDs are mapped to RMODE(31). This is the
default behavior for RMODEX=64TRUE.

2. RMODEX=(64TRUE,31:24), which means RMODE(31) ESDs are mapped to RMODE(24).
Notes:

1. With RMODEX=64TRUE specified, a mapping is only performed when all three kinds of RMODE
ESDs are present, regardless of whether or not a mapping was specified.

2. When RMODEX is specifed, residence modes of entry points are still determined by the binder
RMODE option, if specified. If it is not specified, residence modes of entry points are determined
according to the RMODE where the entry point resides.

3. When the simple format RMODE=rmode is specified, an RMODE mapping is not necessary, as only
one initial load segment will be built. But when RMODE=(rmode,COMPAT) or RMODE=SPLIT is
specified, an RMODE mapping is necessary, as two segments might be built.

4. When neither RMODEX=64TRUE nor RMODE=64 are specified and the program is stored as a load
module in a PDS, any RMODE=64 ESDs are permanently changed to RMODE=31 (ANY). Message
IEW2618I will also be issued.

SCTR: Scatter load option

SCTR causes special control tables to be built in the output load module. This information is used by the
system when loading the nucleus. Otherwise the tables are ignored. The option applies only when saving
a load module.

The syntax of the SCTR option is as follows:

SCTR={NO | YES}

The default is NO.

SCTR or SCTR=YES must be specified when building a module that represents the system nucleus.

SIGN: SIGN option

By specifying the SIGN option, you can build a digital signature for a program object.

The syntax of the SIGN option is as follows:

SIGN={NO | YES}

The default is NO.

If SIGN or SIGN=YES is specified, the binder builds a digital signature in the program object. The bound
program object contains a signature information structure that the loader (or other programs) can use to
determine the signature validity. This signature is used by the system only if the program object resides
in a PDSE. To build the signature, the binder must have access to an appropriate SAF (RACF®) key ring or
to a z/OS PKCS #11 token. For further information, see z/OS Security Server RACF Security Administrator's
Guide.

SIZE: Space specification option

The SIZE option allows you to specify the amount of space available for processing load modules. You
can specify the amount of virtual storage the binder can use and the size of the load module buffers. If

94 z/0S: z/OS MVS Program Management: User's Guide and Reference

SSI

Binder options reference

you specify SIZE when you bind program objects, the value2 subparameter is ignored. Also, if you specify
WKSPACE, the first subparameter of WKSPACE overrides the first subparameter of SIZE.

Note: We recommend that you do not use the SIZE option. Block size for load modules should be
specified with the MAXBLK option (see “MAXBLK: Maximum block size option” on page 88), and
workspace can be allocated with the WKSPACE option (see “WKSPACE: Working space specification
option” on page 99).

The syntax of the SIZE option is:

SIZE=3valuellK] | ([valuel[K],value2[K])}

valuel
Specifies the maximum number of bytes of available virtual storage. For the binder, the minimum
value is 16 KB (16384) and the maximum value is 16000 KB (16 MB).

value2
Specifies the number of bytes of storage to be allocated for the load module buffer. For the binder, the
minimum value is 512 and the maximum value is 65520 (approximately 64KB).

The binder only uses this value to determine the block size of the load module. If MAXBLK is not
specified, the block size is set to half of value2.

When coded in the PARM field, valuel and value2 parameters are enclosed in parentheses. For example:

//LKED EXEC PGM=IEWBLINK,PARM='SIZE=(2048K,32K),..."

Both valuel and value2 can be expressed as integers specifying the number of bytes of virtual storage or
as nK, where "n" represents the number of 1KB (1024) of virtual storage.

The binder provides default values for the SIZE option. The default values are used if you do not specify
any values, or if you specify one or more of the values incorrectly. These defaults should be adequate for
most binds, relieving you from needing to specify the SIZE option.

System status index option

You can specify hexadecimal information to be placed in the system status index by coding the SSI option
in the PARM field as follows:

SSI=ssi-info

ssi-info is a hexadecimal value of exactly 8 digits. This is placed in the system status index of the output
module library directory entry.

If a SETSSI control statement has been coded, the value specified there overrides any value set by this
option.

STORENX: Store not-executable module

Specifies the conditions under which the binder is to store a non-executable program module. The syntax
of the STORENX option is as follows:

STORENX=1YES | NOREPLACE | NEVER}

STORENX=YES

STORENX
When specified, a new module replaces an existing module of the same name regardless of the
executable status of either module. If the NAME statement is provided, the replace option (R) must
have been coded. STORENX=YES can also be specified as STORENX.

Chapter 6. Binder options reference 95

Binder options reference

STORENX=NOREPLACE

STORENX=NO

NOSTORENX
Is the default value and specifies that the binder will not replace an executable module in a program
library with a not-executable version. STORENX=NOREPLACE can also be specified as STORENX=NO or
NOSTORENX.

STORENX=NEVER
Specifies that the system will prevent the save of a non-executable module even when no module
with the same name previously existed in the target library.

STRIPCL: Remove class option

The STRIPCL option allows you to remove unneeded classes from a program object or load module. For a
class to be eligible for removal, in addition to having the "removable" attribute:

« It must not be a binder-owned class (those whose name start with "B_")
« It must not contain any RLD entries

{STRIPCL=YES | NO%

STRIPCL=YES
Specifies that all classes with removable class attribute are to be removed. The removable attribute
may be specified in GOFF files passed to the binder, and is preserved in the program object,
associated with particular classes. The normal usage of this is expected to be for classes composed of
debug data.

If STRIPCL is specified without a value, it is treated as STRIPCL=YES.

STRIPCL=NO
Is the default value and specifies that classes with the removable class attribute are to be retained.

STRIPSEC: Remove section option

The STRIPSEC option allows you to remove unneeded sections from a program object or load module.

STRIPSEC={PRIV|YES | NO%

STRIPSEC=PRIV
Specifies that unreferenced unnamed sections are to be removed. Sections removed by
STRIPSEC=YES are always a superset of STRIPSEC=PRIV. See the note below for more information
concerning unreferenced sections.

STRIPSEC=YES
Specifies that unreferenced and unreferenced unnamed sections are to be removed. Sections
removed by STRIPSEC=PRIV are always a subset of STRIPSEC=YES. See the note below for more
information concerning unreferenced sections.

If STRIPSEC is specified without a value, it is treated as STRIPSEC=YES.

STRIPSEC=NO
Is the default value and specifies that unreferenced sections are not to be removed.

Note: For a section to be considered unreferenced, it must:

« Contain no symbols that are referenced by an ESD
« Contain neither an entry point nor an alias

« Contain no exported symbols

« Not be the target of a control statement

96 z/0S: z/OS MVS Program Management: User's Guide and Reference

Binder options reference

SYMTRACE: Symbol resolution tracing

The SYMTRACE option requests the binder to report some symbol resolution information.

Code the SYMTRACE option as follows:

{SYMTRACE=symbol | SYMTRACE(symbol)}

This option requests symbol resolution information to be produced in SYSPRINT. Messages include:
« The traced symbol may be resolved dynamically (from a DLL):
— IMPORT information encountered: IEW23361, IEW23371.
— IMPORT used for resolution: IEW24231, IEW24241.
« The traced symbol is referenced in a section:
— Section comes from a data set or DDname: IEW24171.
— Section comes from a z/OS UNIX archive member or file: IEW2418I.
« The traced symbol is defined in a section:

Section comes from a data set or DDname: IEW241091.
Section comes from a z/OS UNIX archive member or file: IEW2420I.

—

f origination information is available, the above messages are accompanied by one of these:

Origination section comes from a data set or DDname: IEW24211.

Origination section comes from a z/OS UNIX archive member or file: IEW24221.
« The traced symbol is not yet resolved so will be searched for using AUTOCALL:

— Searching a data set or DDname: IEW25461.

— Searching a z/OS UNIX archive library or directory: IEW25471.

If the traced symbol is not found in all explicitly included modules and libraries, no symbol trace message
is issued.

When the binder is required to print a message containing a variable (symbol) with a length greater than
1024 bytes, the message prints only the first 1024 bytes of the variable (symbol). Refer to “The message
summary report” on page 145 for this limitation.

Note: By default, SYMTRACE is off. After it is turned on, you can turn it off again by specifying
SYMTRACE=".

If compilers have mangled symbol names, the mangled names should be used for the SYMTRACE option.

As symbol resolution is case sensitive, to trace a case-sensitive symbol name, either set the CASE option
to MIXED or specify the symbol name in single-quotes.

Modifying a symbol name by any of the following means does not have any affect on the name of the
symbol be traced:

1. Changed by a CHANGE or REPLACE control statement or corresponding ALTERW API call; renamed by
a RENAME control statement or corresponding RENAME API call, or renamed according to other rules
described in “Renaming” on page 58.

2. Changed by the interface validation user exit, action code 4.

TERM: Alternate output option

You can request that the numbered error and warning messages be written to the data set defined by a
SYSTERM DD statement by coding TERM in the PARM field.

Chapter 6. Binder options reference 97

Binder options reference

{TERM | TERM=NO | NOTERM}

When the TERM option is specified, a SYSTERM DD statement must be provided. If it is not, the TERM
option is ignored and messages are written only to the SYSPRINT or SYSLOUT data set.

Output specified by the TERM option supplements printed diagnostic information. When TERM is used,
binder error/warning messages appear in both output data sets.

TERM=NO is the default value and can also be specified with the keyword NOTERM.

TEST: Test option

A program with the test attribute contains information about internal symbols in a form that can be
accessed with the TSO TEST command. Symbol tables to be used by the TSO TEST command should be
included in the input to the binder, which will place them in the output module. If the test attribute is
not specified, any symbol tables in the input are ignored by the binder and are not placed in the output
module. If the test attribute is specified, and no symbol table input is received, the output load module
will not contain symbol tables to be used by the TSO TEST command.

Specifying the TEST option is not useful unless you are going to use the TSO TEST command on the
program. The symbol tables in the program are ignored except when using the TSO TEST command.

You assign the test attribute by coding TEST in the PARM field.

{TEST | TEST=NO | NOTEST}

The TEST option is only valid for program modules that are stored in a program library for later execution.

TEST=NO0 is the default option and can also be specified with the keyword NOTEST.

TRAP: Error recovery

Specifying the TRAP option lets you control error trapping.
This option can be specified only in the following ways:

« The PARM string when the binder is invoked from JCL.

« The first parameter in the parameter list passed when calling the binder from another program
(IEWBLINK, IEWBLOAD, IEWBLODI, IDWBLDGO).

« The IEWBIND API FUNC=STARTD OPTIONS= or PARMS= parameters.

{TRAP=0ON | ABEND | OFF%

ON
Causes the binder to establish both an ESTAE and an ESPIE exit. This will trap all abends and program
checks that occur while the binder is in control. A key aspect is that parameter validation done by the
binder API will return the documented results even if some program in the binder calling sequence
has a program check exit.

ABEND
The binder will establish an ESTAE exit but not an ESPIE exit. This will trap all abends, but program

checks will be caught by the binder only if no program in the binder calling sequence has an ESPIE
exit.

Note:

98 z/0S: z/OS MVS Program Management: User's Guide and Reference

Binder options reference

1. Especially with the API interface, program checks may occur during binder validation of its input.
The binder will normally recover from those and convert them into return codes. It will be unable
to do that if TRAP=ABEND was specified and some calling program has an ESPIE exit.

2. A Language Environment will normally include an ESPIE exit, so Language Environment-enabled
programs calling the binder should not use TRAP=ABEND unless they are being debugged or have
made special provision for this situation.

3. Prior to z/OS 1.5 there was no TRAP option, but the binder behavior matched what is now defined
for TRAP=ABEND.

OFF
Prevents the binder from establishing any ESTAE or ESPIE exit. This will allow callers of the binder to

trap all abends and program checks.
Note: Many data set related ABENDs are passed directly by DFSMS to binder routines doing
I/0. These do not go through binder ESTAE processing and will continue to be caught even with
TRAP=OFF.
UID: Specify user ID
The UID option allows you to specify the User ID attribute to be set for the SYSLMOD file:

UID=value

where

value
A string of up to 8 alphanumeric characters that represents a user name (such as TSO logon ID) or a
numeric z/OS UNIX user id.

UPCASE: UPCASE option

This option indicates whether additional renaming should be done when symbols remain unresolved.
Unresolved function references that are marked as renameable and are not imported are set to uppercase
if they are eight characters or less in length. Also, underscore (' _"') is mapped to '@' and names
beginning with IBM, CEE, or PLI have their respective prefixes changed to IB$, CE$, and PL$. After

the renaming process is complete, an attempt to resolve the symbols using the new names is made.
Traditional object modules do not support the renameable bit and thus symbols originating from them are
not affected by the UPCASE option.

The UPcase option provides binder function roughly equivalent to the prelinker UPCASE option.
The UPCASE option can be specified in the PARM field as follows:

1UPCASE | UPCASE=YES | UPCASE=NQO | NOUPCASE}

Note: UPCASE is supported only for format 3 or higher program objects. This is expressed as
COMPAT=PM3 or equivalent, or higher. But when COMPAT=MIN is indicated, the binder does not force
PM3 or higher simply to satisfy UPCASE=YES.

WKSPACE: Working space specification option

The WKSPACE option allows you to specify the amount of virtual storage available to the binder during
processing.

The syntax of the WKSPACE option is:

WKSPACE=([valuel] [, value2])

Chapter 6. Binder options reference 99

Binder options reference

valuel
The maximum amount of virtual storage below the 16 MB line, in units of 1KB, that is available for
binder processing.

value2
The maximum amount of virtual storage above the 16 MB line, in units of 1KB, that is available for
binder processing.

For example:

//LKED EXEC PGM=IEWBLINK,PARM='WKSPACE=(96,1024),...

If valuel is not specified and the SIZE option has been specified, valuel is set to valuel as specified on
the SIZE option. If the SIZE option is not specified, the binder assumes that it can use all available virtual
storage below 16 MB. We recommend that you use the WKSPACE option with the MAXBLK option and in
place of the SIZE option.

If value2 of the WKSPACE option is not specified, the binder allocates workspace from above 16 MB as
needed until no more space is available.

Under normal circumstances, the binder can determine its own workspace requirements. You should not
need to specify the WKSPACE parameter unless you have unusual virtual storage considerations.

We recommend a minimum of 96 KB below 16 MB and 2048 KB above 16 MB for all binder processing.

XCAL: Exclusive call option

You use the XCAL option when valid exclusive references have been made between segments of an
overlay program. A warning message is issued for each valid exclusive reference, but the binder marks the
output module as executable.

See “References between segments” on page 196 for information about valid exclusive references.

To specify the exclusive call option, code XCAL in the PARM field.

iXCAL | XCAL=NO | NOXCAL}

The OVLY attribute must also be specified when you use the XCAL option. For example:

//LKED EXEC PGM=IEWBLINK,PARM="XCAL,OVLY, ...

XCAL=NO is the default value and can also be specified with the keyword NOXCAL.

XREF: Cross reference table option

You can request a cross-reference table of a program module by coding XREF in the PARM field.

iXREF | XREF=NO | NOXREF}

When the XREF option is specified, the binder produces a cross-reference table of the program module

in the SYSPRINT data set. In the case of an empty module, no program module map will be generated. If
you also need a module map, you must request one using the MAP option. Figure 32 on page 139 contains
an example of a cross reference table.

When a bind specifying the XREF option fails resulting in a not-executable (NX) module, a cross-reference
table will be included in the binder listing.

XREF=NO is the default value and can also be specified with the keyword NOXREF.

100 z/0S: z/OS MVS Program Management: User's Guide and Reference

Control statement reference

Chapter 7. Binder control statement reference

You provide control statements to the binder to specify editing operations and identify additional input.
You can provide entry and module names and specify the authorization code of a program module.

This topic summarizes the binder control statements. Statement descriptions are in alphabetical order,
and include the purpose, syntax, placement in the input stream, and examples.

Before using these control statements, you should also be familiar with the syntax and national
conventions described in “Notational conventions” on page xviii.

Note: This topic refers to binder processing. These concepts apply equally to linkage editor and batch
loader processing unless noted otherwise in Appendix A, “Using the linkage editor and batch loader,” on
page 157. The linkage editor and batch loader cannot process program objects.

Binder syntax conventions

Each binder control statement specifies an operation and one or more operands. Nothing must be written
preceding the operation, which must begin in or after column 2. The operation must be separated from
the operand by one or more blanks; blanks cannot be embedded within the operand field (see “Rules for
comments” on page 102).

Control statements are specified in 80-byte lines. A control statement can be continued on as many lines
as necessary. However, the control statement keyword must be entirely on the first line and the operands
must begin on the first line. A control statement can be continued in one of the following ways:

1. Terminate an operand at a comma followed by a blank. The comma must be in column 71 or earlier.
Continuation lines can begin anywhere after column 1. Any leading blanks are discarded.

2. If the operand field goes to column 71 (with no embedded blanks) and column 72 is nonblank, the
next line is treated as a continuation line. As in 1, the continuation line can begin anywhere after
column 1 and any leading blanks are discarded. Columns 73 through 80 of each line are reserved for
sequence numbers, which are not processed by the binder.

3. An operand enclosed in single quotation marks can be continued. The binder searches as many
records as necessary until it finds the ending quotation mark. The full operand is reconstructed by
concatenating the fragments starting with column 2 of each line. In this case, the continuation of
the operand must start in column 2, or the operand is considered to have embedded blanks and is
truncated at the first blank. You can continue coding additional operands as usual following the ending
quotation mark. An example of this is:

123456789.123456789.123456789.123456789.123456789.123456789.123456789 .12
INCLUDE '/this/is/a/very/long/path/that/needs/to/be/split/across/two/1-
ines/input.o','./and/a/second/path/private.o’

Most binder control statements require various symbols or names to be specified as operands. Unless
otherwise noted, all such names and symbols must be 32767 bytes or less and consist of EBCDIC
characters within the range of X'41' through X'FE' plus the double-byte character set (DBCS) SO/SI
control characters X'OE' and X'OF'. It is strongly recommended that all such names consist of displayable
characters only and that they are enclosed by single quotation marks if they contain other than upper
case alphanumeric characters. DDnames, member names, and alias names must conform to the JCL
coding rules for those parameters.

You can enclose any symbol except binder-defined keywords with single quotation marks. If you want to
use commas or parentheses in a symbol in a control statement, you must enclose that symbol in single
quotation marks. A single quotation mark embedded in a quoted string must be coded as two consecutive
quotation marks. Only complete symbols can be enclosed in single quotation marks. Characters within
quoted strings will not be folded to upper case, regardless of the value of the CASE option. A quoted string
with no closing quotation mark continues in column 2 of the next line.

© Copyright IBM Corp. 1991, 2021 101

Control statement reference

A number of metasymbols dealing with names and program symbols have been used in the control
statement syntax diagrams in this topic. These metasymbols include the following;:

= symbol, newsymbol. A user-assigned name with a maximum length of 32767 bytes and consist only of
characters from the binder's character set, described above.

- externalsymbol, external reference. Those symbols that are or will be defined in the External Symbol
Dictionary (ESD). These include entry names defined by a Label Definition (LD), section names that are
implied entry names, external references (ER) and part references (PR), which are for part names or
pseudoregister (external dummy section) names.

- sectionname. Those symbols which name sections in the module. Section is a generic term
encompassing control sections, private code sections and common areas. Blank common and private
code sections cannot be named on binder control statements.

« directoryname. Those symbols that appear or will appear in the directory of a named library structure.
Directory names include member names, aliases and unqualified z/OS UNIX file names, and have length
restrictions imposed by the underlying file system.

File system Member name Alias name
PDS Library 8 8

PDSE Library 8 1024

z/0OS UNIX Directory 255 255

« ddname. The name coded in the label field of a dd-statement. Ddnames are limited to eight bytes.

« pathname. A z/OS UNIX pathname designating either a directory or a regular file (depending on the
control statement). It must begin with either "./" (meaning a relative pathname) or "/" (meaning an
absolute path name) and is limited to 1023 bytes in length. To prevent the pathname from being folded
to uppercase, you should either enclose the pathname in single quotation marks or specify the binder
CASE=MIXED option. z/OS pathnames are replaced in the binder listing output by generated "ddnames"
of the form "/nnnnnnn", where nnnnnnn is numeric. The true pathname may be found in the DDname vs
Pathname report.

You can include blank lines between control statements but not within a statement. A blank line indicates
an end to any statement.

For more information on syntax and notational conventions, see “Notational conventions” on page xviii.

Syntax errors

If a syntax error is detected while processing a control statement, the remainder of the statement is
skipped and not processed. However, any operands in the portion of the statement preceding the error
are processed.

Rules for comments

Placing an asterisk (*) in column 1 of a control statement causes the binder to treat that line as a
comment. The content of column 72 is ignored on a comment line. You can include comment lines
anywhere in the control statement input except within a quoted string. You can also include comments on
a control statement line; anything at the end of a control statement line separated from the operands by
one or more blanks will be treated as a comment. Comments are not processed by the binder but can be
printed.

Aline is also treated as a comment if the previous statement ends with a blank but has a nonblank
character in column 72.

102 z/0S: z/OS MVS Program Management: User's Guide and Reference

Control statement reference

Placement information

Binder control statements are placed before, between, or after object modules. They can be grouped, but
they cannot be placed within a module. However, specific placement restrictions might be imposed by the
nature of the services being requested by the control statement. Any placement restrictions are noted.

If a function can be specified either on a control statement or as an option in the PARM field of the EXEC
statement, the control statement specification takes precedence.

ALIAS statement

The ALIAS statement specifies one or more additional names for the primary entry point, and can also
specify names of alternate entry points.

Note: Alternate entry points are not supported for program objects that reside in z/OS UNIX files. If a
z/0S UNIX path name is specified, that name becomes a true alias of the primary entry point.

The binder does not place a limit on the number of alias names that can be specified on an ALIAS
statement or on separate ALIAS statements for one library member. These names are entered in the
directory of the partitioned data set or PDSE in addition to the member name. If the symbol specified as
the alias has appeared on an earlier ALIAS control statement, the new specification replaces the earlier
one.

Note: If the module contains multiple text classes, all entry points must be defined in the same class.

The syntax of the ALIAS statement is:

ALIAS idirectoryname[(externalsymbol)]?
$ (SYMLINK, pathname)?t
1 (SYMPATH, pathname)?
Looood

directoryname
Specifies an alternate name for the program object or load module. The symbol might or might not be
the name of an external entry point within the program.

When the program is executed using the alias name, execution begins at the entry point associated
with the alias. The entry point is determined according to the following rules:

1. If an externalsymbol is specified as an entry point (see below) for the alias, execution begins at that
entry point.

2. If the alias symbol matches an entry name within the program, execution begins at that entry
point.

3. If the alias symbol does not match an entry name within the program, execution begins at the main
entry point.

externalsymbol
Specifies the name of the entry point to be used when the program is executed using the associated
alias. If the external symbol is the name of an entry point within the program, that name is used as
the entry point for the alias. If the external symbol is not an entry point name, but another external
name such as a pseudoregister or an unresolved external reference, the main entry point is used as
the entry point for the alias. If the symbol you specify is not defined in the program, the alias is not
created.

SYMLINK
A symbolic link is a z/OS UNIX file that contains the pathname for another file or directory. Symbolic
links can be links across mounted file systems.

SYMPATH
The contents of the path designated by a SYMLINK request are specified by the next following
SYMPATH request.

Chapter 7. Binder control statement reference 103

Control statement reference

pathname
The pathname to or contained by a symbolic link. The pathname contained in a symbolic link can be
relative or absolute. If a symbolic link contains a relative pathname, the pathname is relative to the
directory containing the symbolic link.

These entries can be repeated in any order. Alias entries can be divided up among separate ALIAS
statements as desired except that there must be at least one SYMPATH specification following a given
SYMLINK or group of SYMLINKs.

Placement: An ALIAS statement can be placed before, between, or after object modules or other control
statements. It must precede a NAME statement used to specify the member name, if one is present.

Note:

1. In an overlay program, an external name specified by the ALIAS statement must be in the root
segment. In a multitext class program object, an alternate entry point specified by an ALIAS statement
must be defined in the same class as the primary entry point.

2. When a program module in an MVS data set is reprocessed, all ALIAS statements should be
respecified so that the directory is updated. Otherwise, for replaced load modules, the aliases remain
in the directory and point to the old library member. When a program object is replaced, the aliases are
deleted.

When a program module in a z/OS UNIX file is reprocessed, the existing aliases will be retained,
whether or not the existing aliases are respecified on ALIAS control statements.

3. Each alias name that is specified must be unique within the library. If the specified alias name matches
an existing member name within the library, the alias will be rejected. If the specified alias name
matches an existing alias name in the library and the replace option (R) was not specified, the alias
will be rejected. If replace was specified, the new alias name will replace the existing one.

4. To avoid name conflicts, delete obsolete alias names from the program library directory.

5. You can execute a program object that resides in a z/OS UNIX file by specifying an alias name.
However, execution will always begin at the main entry point. By using the binder call interface, it is
possible to copy the program module and its aliases to a partitioned data set or a PDSE. The alias
information that was saved in the program object will be used to create aliases for the copied module
as either true aliases or alternate entry points, in accordance with the rules documented here.

6. The binder ALIAS control statement, or equivalent binder API call, is used to specify an alias to a
particular entry point (target symbol) in the executable. However, for a module with multiple text
classes, all the entry points must be in the first class of the first segment (PO3 or higher support
multiple loadable text classes). Beginning with V2R2, if a user sets an alias to a symbol not in the
first class of the first segment (perhaps unintentionally), Program Management reports this situation as
described in the following:

a. For ALIAS A, if A matches the name of an external symbol, and that symbol is not in the first class
of the first segment, the alias A is made a true alias (just as if there were no matching external
symbol) and so is marked as EXECUTABLE, and Program Management issues the informational
message IEW26191.

b. For ALIAS A(TARGET), if TARGET matches the name of an external symbol and that symbol is not in
the first class of the first segment, the alias A is made a true alias (just as if there were no matching
external symbol) and so is marked as NOT EXECUTABLE. The return code is minimally 4 and the
warning message IEW2652 is issued.

Symbolic link support

The SYMLINK and SYMPATH functions of the ALIAS control statement can be used to establish an
arbitrary number of symbolic links. The contents of the path designated by a SYMLINK request are
specified by the next following SYMPATH request. The result of a SYMLINK/SYMPATH pair is the creation
of a file whose:

1. pathname is the SYMLINK path concatenated to the SYSLMOD path
2. file type is 'symbolic link'

104 z/0S: z/OS MVS Program Management: User's Guide and Reference

Control statement reference

3. contents are given by SYMPATH.

SYMPATH specification applies to all SYMLINK specifications that precede it, until the preceding
SYMPATH specification (if any).

Thus, in the following skeleton example:

ALIAS (SYMLINK,A1)
ALIAS (SYMLINK,A2)
ALIAS (SYMPATH,B1)
ALIAS (SYMLINK,A3)
ALIAS (SYMLINK,A4)
ALIAS (SYMLINK,A5)
ALIAS (SYMPATH,B2)
ALIAS (SYMLINK,A6)

SYMPATH B1 is used for A1 and A2, SYMPATH B2 is used for A3 through A5, and A6 is in error.
Continuation rules and general syntactical rules are the same as those for other Binder control
statements and control statement operands. Length limits for both the control statement and ADDA API
call are 1024 for both SYMLINK and SYMPATH.

If the GID or UID options are specified, the UID and GID values for SYSLMOD are also used for the
symbolic links.

Example

An output module, ROUTL, is assigned an alternate entry point, CODE1. CODE1 can also be invoked by
an alias, CODE2. In addition, calling modules have been written using both ROUT1 and ROUTONE to refer
to the output module. Rather than correct the calling modules, an alternate library member name is also

assigned.
ALIAS CODE1,CODE2 (CODE1) , ROUTONE
NAME ROUT1

Because CODE1 is an entry name in the output module, execution begins at the point referred to when
this name is used to call the module. The same entry point will be selected when CODE2 is called,
since CODE2 is an alias for the CODE1 entry point. The modules that call the output module with the
name ROUTONE now correctly refer to ROUT1 as its main entry point. The names CODEZ1, CODE2, and
ROUTONE appear in the library directory along with ROUT1.

ALIGNT statement

The ALIGNT statement specifies an alignment boundary to be used for the specified section name.

ALIGNT boundary,sectionname
[(classnamel[,classname2]...)]

boundary
Specifies the alignment boundary to be used for the specified section name. The value may be any
power of 2 between 1 and 4096; specifically, 1, 2, 4, 8, 16, 32, 64,128, 256, 512,1024, 2048, or
4096 are allowed.

The value 0 is also allowed, which causes the default alignment to be used. This is the alignment that
is used if no ALIGNT statement is specified.

sectionname
Specifies the name of the section to be aligned on the specified boundary.

classname
The names of the classes defined in sectionname, to be aligned on the specified boundary. If not
specified, all the class names (elements) in the specified section are aligned, with the exception of
merge classes.

Placement: An ALIGNT statement can be placed before, between, or after modules or other control
statements.

Chapter 7. Binder control statement reference 105

Control statement reference

Note:

1. If a section is changed by a CHANGE or REPLACE control statement, and boundary alignment is
wanted, specify the new name on the ALIGNT statement.

2. The section and classes named can appear in either the primary input or the automatic call library, or
both.

3. ALIGNT does not affect the alignment of pseudo-registers in the section. It only affects the alignment
of parts if their defining merge class name is specified. It is applied to every part in the merge class in
addition to the class itself.

4. ALIGNT is not affected by the ALIGN2 option.

5. If class names are specified, those classes will be aligned. A merge class name may be listed. If the
same section name is specified on more than one ALIGNT statement that specifies class names, those
class names are added to the list of classes to be aligned.

6. If ALIGNT that specifies a section name with no class names is followed by one or more ALIGNT
statements that specify class names, any unspecified classes in the section (excluding any merge
classes) are aligned according to the first ALIGNT that had no class names.

7. The alignment specification is not preserved if the module is rebound. ALIGNT must be specified every
time the module is bound.

8. Unlike ALIGNT, the PAGE control statement interacts with other methods of specifying alignments.
PAGE produces results like the ALIGNT 4096 (or ALIGNT 2048 if the ALIGN2=YES option is specified).
PAGE is equivalent to using (P) on the ORDER control statement.

Consider the following example:

ALIGNT 32,MYDATA
ALIGNT 256,MYCODE (B_TEXT)
ALIGNT 256,MYCODE(C_CODE,MY_CLS)

This example demonstrates the use of aligning multiple classes of two different sections. In one case, all
classes (elements) are aligned. In the other, only certain classes are specified.

Example

//SYSLIN DD =

ENTRY CSECTO

INCLUDE OBJLIB(OBJECT1)

ALIGNT 512,CSECT2(CS2_CLS23)

ALIGNT 00004096,CSECT2(C123456789012345)

ALIGNT 000O00000,CSECT2(CS2_CLS26)

ALIGNT 01024,CSECT2(CS2_CLS2A,CS2_CLS2B,CS2_CLS2C,CS2_CLS2D)
ALIGNT 032,CSECT2(cs2_cls2a)

NAME TEMPA(R)

/*

AUTOCALL statement

The AUTOCALL control statement prompts the binder to perform incremental (or immediate) autocall
using only the given library as the search library to resolve symbol references. See “Resolving external
references” on page 53 for more information on autocall.

The syntax of the AUTOCALL statement is:

AUTOCALL ddname | pathname

ddname
Specifies the name of a DD statement that describes a PDSE program object library, a PDS library
containing object modules or load modules, or a z/OS UNIX directory or archive library file.

106 z/0S: z/OS MVS Program Management: User's Guide and Reference

Control statement reference

pathname
Specifies the absolute or relative pathname for a z/OS UNIX directory or archive library file. See
“Binder syntax conventions” on page 101 for a discussion of continuations and lower case letters.

Placement: The AUTOCALL control statement can be placed anywhere in the job stream or input data set.
Note:

1. This statement can be specified at any time during primary and secondary input to the binder.
However, if there are any references left unresolved after any number of AUTOCALL control
statements, the binder does not diagnose them.

2. If no autocall (NCAL or CALL=NO) is in effect, incremental autocall is not performed. See Chapter 6,
“Binder options reference,” on page 69 for information on the CALL and NCAL option.

3. The AUTOCALL statement replaces one form of the LIBRARY statement which was supported by
the Language Environment prelinker but is not supported by the binder. (See “Binder extensions
supporting the Language Environment” on page 32.)

4. No symbol renaming is done when the binder attempts to resolve references during incremental
autocall.

Example

The following example shows how the AUTOCALL statement is invoked to immediately resolve references
made available during a recent INCLUDE.

//0BJIMOD DD DSNAME=PROJECT . TAXES,DISP=(OLD,DELETE), ...
//LOADMOD DD DSNAME=PROJECT.LOADLIB,DISP=0LD, ...
//SYSLIB DD DSNAME=PROJECT .MAIN.LOADLIB,DISP=0LD,...
//SYSLIN DD *

INCLUDE 0BJMOD
_ AUTOCALL LOADMOD

/%

In the example, OBIMOD is included first, followed by an autocall request that uses the LOADMOD
module library to resolve references. At this point, no attempt is made to resolve references using SYSLIB,
and unresolved references are not diagnosed. The binder waits until all input has been specified to do a
final autocall. At that time, it attempts to resolve any outstanding references by searching SYSLIB. After
final autocall, if any references remain unresolved, the binder states them in its messages.

CHANGE statement

The CHANGE statement causes an external symbol to be replaced by the symbol in parentheses following
the external symbol. The external symbol to be changed can be a control section name, a common area
name, an entry name, an external reference, or a pseudoregister. More than one such substitution can be
specified in one CHANGE statement. The syntax of the CHANGE statement is:

CHANGE [-IMMED,] externalsymbol (newsymbol)
[,externalsymbol (newsymbol)]. ..

-IMMED
Causes the target of the CHANGE control statement to be the sections already included in the module
being bound.

externalsymbol
The external symbol that is changed.

newsymbol
The name to which the external symbol is changed.

Placement: In the job stream or input data set, the CHANGE control statement must be placed before
either the module containing the external symbol to be changed, or the INCLUDE control statement
specifying the module. The scope of the CHANGE statement is across the next object module, load
module, or program object. However if the -IMMED option is specified, the CHANGE control statement

Chapter 7. Binder control statement reference 107

Control statement reference

should be placed anywhere after the module being changed, or the INCLUDE statement specifying the
module.

Note:

1. External references from other modules to a changed control section name or entry name remain
unresolved unless further action is taken.

2. If both the original name and the new name specified for the external symbol are already defined in
the output module, the new name is deleted from the module before the original name is changed. If
the new name defines a control section, the original section with the same name will be deleted. The
results received from the binder under this condition vary from the results received from the linkage
editor.

3. When a REPLACE statement that deletes a control section is followed by a CHANGE statement with the
same control section name, the results are unpredictable.

4. If a CHANGE statement without the -IMMED option is not followed by any included module, the binder
issues a diagnostic message and ignores the change.

5. If a CHANGE statement appears in a module included from an automatic call library, it will be ignored if
it is not followed by a module from the same member.

6. The -IMMED option is not allowed during autocall processing.

7. externalsymbol may be specified using the syntax $PRIVxxxxxx (where xxxxxx is 6 hexadecimal digits)
to represent an unnamed symbol. To determine the appropriate value to use, it is necessary to
rebind the single module and produce a MAP and/or XREF. The $PRIVxxxxxx symbol names from that
binder output can be used in CHANGE statements on the very next bind of the single module. Names
$PRIVO0000O - $PRIVO000OF are reserved by the Binder and may not be used as externalsymbol.

Examples

Change Control Section Name: Example 1

Two control sections in different modules have the name TAXROUT. Because both modules are to be
bound together, one of the control section names must be changed. The module to be changed is defined
with a DD statement named OBJMOD. The control section name could be changed as follows:

//0BJIMOD DD DSNAME=PROJECT . TAXES,DISP=0LD, ...
//SYSLIN DD *

CHANGE TAXROUT (STATETAX)

INCLUDE 0BJMOD

/%
As a result, the name of control section TAXROUT in module TAXES is changed to STATETAX.

Change Module References: Example 2

A program object or load module contains references to TAXROUT that must be changed to STATETAX.
This module is defined with a DD statement named LOADMOD. The external references could be changed
at the same time the control section name is changed:

//0BJIMOD DD DSNAME=PROJECT . TAXES, DISP=(OLD,DELETE), ...
//LOADMOD DD DSNAME=PROJECT.LOADLIB,DISP=0LD, ...
//SYSLIN DD *

CHANGE TAXROUT (STATETAX)
INCLUDE 0BJMOD

CHANGE TAXROUT (STATETAX)
INCLUDE LOADMOD (INVENTRY)

i
As a result, control section name TAXROUT in module TAXES and external reference TAXROUT in module
INVENTRY are both changed to STATETAX.

For program objects with multiple text classes, there may be other related symbols that make up the
compilation unit, that have names that should be changed along with the control section. In particular,

108 z/0S: z/OS MVS Program Management: User's Guide and Reference

Control statement reference

there may also be entry points and parts which are named implicitly or explicitly by language translators.
Often all of the names will follow a naming convention, where they begin with a common prefix so that
they are easily recognizable as belonging to the same compilation unit. Language translators often choose
such names implicitly, such as based on program member name or file name, or explicitly, such as by a
user controlled language translator language statement, option or control statement.

With a program objects that utilize multiple text classes, if all the related symbols are not renamed, it
might not be apparent that they are related to the same compilation unit. Also, there are often relocations
within the compilation unit, which refer to these related symbol names. Thus, there are situations where if
they are not all renamed, there can be errors at execution time due to unintended relocations. Unintended
relocations may occur when there are duplicates of the changed symbols names.

Thus it is recommended that when binding program objects which utilize multiple text classes, all such
related symbols be renamed. For example, a language translator may have produced a single compilation
unit with the following symbol names:

control section: TAXROUT
labels: TAXROUT, TAXROUTHC
part: TAXROUTH#S

These related symbols should all be changed if any one is changed, as in the following example:

CHANGE multiple text class Program Object: Example 3:

//0BJIMOD DD DSNAME=PROJECT . TAXES,DISP=0LD, ...
//SYSLIN DD *

CHANGE TAXROUT (STATETAX)

CHANGE TAXROUT#C (STATETAX#C)

CHANGE TAXROUTH#S (STATETAXIS)

INCLUDE 0BJMOD

If for example the same object module is included again it will now have unique related names so there
will be no unintended relocations due to duplicate names. Subsequent uses of the object module can
change the related symbols to their own unique names, thus ensuring there are never duplicates.

CHANGE multiple text class Program Object with duplicates: Example 4:

//0BJIMOD DD DSNAME=PROJECT . TAXES,DISP=0LD, . ..
//SYSLIN DD *

CHANGE TAXROUT (STATETAX)

CHANGE TAXROUT#C (STATETAX#C)

CHANGE TAXROUTH#S (STATETAX4S)

INCLUDE 0BJMOD

CHANGE TAXROUT (FEDERALTAX)

CHANGE TAXROUT4#C (FEDERALTAX#C)

CHANGE TAXROUT#S (FEDERALTAX#S)

INCLUDE 0BJMOD

As in the single text class Example 2, other modules making external references to any of these changed
symbol names, will also need to use the same CHANGE statements, to match whichever new symbol
names it intends to use.

ENTRY statement

The ENTRY statement specifies the symbolic name of the first instruction to be executed when the
program is called by its module (member) name for execution or by an alias that does not match an
executable external symbol. An ENTRY statement should be used whenever a module is reprocessed by
the binder. The syntax of the ENTRY statement is:

ENTRY externalsymbol

externalsymbol
Defined as either a control section name or an entry name in an input module.

Chapter 7. Binder control statement reference 109

Control statement reference

Placement: An ENTRY statement can be placed before, between, or after object modules or other control
statements. It must precede the NAME statement for the module, if one is present.

Note:

1. If you provide more than one ENTRY statement, the main entry point specified on the last statement is
used.

2. In an overlay program, the first instruction to be executed must be in the root segment.

3. The external name specified must be a name associated with an instruction, not data, if the module is
executed.

4. The order of precedence for determining the entry point is (from highest to lowest):

« The ENTRY control statement or EP option specified on a SETOPT control statement

« An entry point specified as an EP option in the PARM field of an EXEC statement or in a file processed
as a result of the OPTIONS option in the PARM field

« An entry point specified on an END statement of an object module

If none of the above is present, the entry point defaults to either CEESTART if DYNAM=DLL and
CEESTART exists, or the first byte of the first control section in the program. If the module contains
multiple text classes and an entry point is not specified, the results are not predictable.

5. If the module contains multiple text classes, the primary and all alternate entry points must be defined
in the same class.

Example
In the following example, the main entry point is INIT1:
//LOADLIB DD DSNAME=PROJECT . LOADLIB, DISP=0LD
//SYSLIN DD *

ENTRY INIT1
INCLUDE LOADLIB(READ,WRITE)
/*

INIT1 must be either a control section name or an entry name in one of the program objects or load
modules named READ or WRITE.

EXPAND statement

The EXPAND statement lengthens control sections or named common areas by a specified number of
bytes. The syntax of the EXPAND statement is:

EXPAND sectionname(length[,classname])
[,sectionname(length[,classname])] .

sectionname
Symbolic name of a common area or control section whose length is increased.

length
The decimal number of bytes to be added to the length of the section. The length of the section can be
expanded to reach the maximum text size of a program object or load module. The maximum text size
of a program object is 1 GB; the maximum text size of a load module is 16 MB. Binary zeros are used
to initialize an expanded control section.

classname
The name of the text class to be expanded. Classname is not valid when COMPAT=LKED or
COMPAT=PM1. Classname defaults to B_TEXT if it is not specified.

A message indicates the number of bytes added to the control section and the offset, relative to the
start of the control section, where the expansion begins. The effective length of the expansion is given in
hexadecimal and can be greater than the specified length if, after the specified expansion, padding bytes
must be added for alignment of the next control section or named common area.

110 z/0S: z/OS MVS Program Management: User's Guide and Reference

Control statement reference

Placement: An EXPAND statement can be placed before, between, or after other control statements or
object modules. However, the statement must follow the module containing the control section or named
common area to which it refers. If the control section or named common area is entered as the result of
an INCLUDE statement, the EXPAND statement can appear anywhere between the INCLUDE and NAME
statements.

Note: EXPAND should be used with caution so as not to increase the length of a program beyond its
own design limitations. For example, if space is added to a control section beyond the range of its base
register addressability, that space is unusable unless you make other changes to the program to allow it
to address the extra space.

Example

In this example, EXPAND statements add a 250-byte patch area (initialized to zeros) at the end of control
section CSECT1 and increase the length of named common area COM1 by 400 bytes.

//LKED EXEC PGM=IEWBLINK
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DSNAME=PROJECT.PROGLIB,DISP=0LD
//SYSLIN DD DSNAME=&&LOADSET ,DISP=(0LD, PASS)
// DD *
EXPAND CSECT1(250)
EXPAND COM1 (400)
NAME MOD1 (R)
/*
IDENTIFY statement

The IDENTIFY statement specifies any data you supply be entered into the CSECT identification records
(IDR) for a particular control section. The statement can be used either to supply descriptive data for

a control section or to provide a means of associating system-supplied data with executable code. The
syntax of the IDENTIFY statement is:

IDENTIFY sectionname('data') [, sectionname
('data')]...
sectionname
The symbolic name of the control section to be identified.
data

Specifies up to 80 EBCDIC characters of identifying information for program objects, and up to 40
characters for load modules. You can supply any information desired for identification purposes.

Placement: An IDENTIFY statement must follow the module containing the control section to be
identified or the INCLUDE statement specifying the module.

The syntax rules for the operand field are:

1. Blanks are not allowed between the CSECT name and the left parenthesis.

2. No blanks or characters are allowed between the left parenthesis and the leading single quotation
mark nor between the trailing single quotation mark and the right parenthesis.

3. The data field consists of from 1 to 80 characters for program objects and 1 to 40 characters for load
modules; therefore, a null entry must be represented, minimally, by a single blank.

4. Blanks can appear between the leading single quotation mark and the trailing single quotation mark.
Each blank counts as 1 character toward the character limit.

5. A single quotation mark between the leading quotation mark and the trailing quotation mark is
represented by 2 consecutive quotation marks. The pair of quotation marks counts as 1 character
toward the character limit.

6. The IDENTIFY statement can be continued. If you are using the binder, the data characters end in
column 71 and continue at column 2 on the next line.

Chapter 7. Binder control statement reference 111

Control statement reference

7. If a leading quotation mark is found, all characters are read in until a trailing quotation mark is found or
the character limit is reached.

8. A blank following a comma that terminates an operand also terminates the operand field for that
record.

9. Double-byte character set (DBCS) characters can be included within the descriptive data. DBCS
characters must be delimited by the shift-out (X'OE') and shift-in (X'OF') characters. The shift-out and
shift-in characters and the delimited DBCS characters count as one or two bytes, respectively, toward
the total length of the string.

You can provide more than one IDENTIFY statement for each control section name when you are creating
a program object. However, if you are creating a load module, you can provide only one IDENTIFY
statement. If you provide more than one IDENTIFY statement per control section for load modules, the
information on only the last IDENTIFY statement is saved. The contents of each IDENTIFY statement will
be saved in a separate record in the program object.

Example

In this example, IDENTIFY statements are used to identify the source level of a control section, a PTF
application to a control section, and the functions of several control sections.

//LKED EXEC PGM=IEWBLINK

//SYSPRINT DD SYSOUT=*

//SYSLMOD DD DSNAME=PROJECT .LOADLIB,DISP=0LD
//0LDMOD DD DSNAME=PROJECT.OLD.LOADLIB,DISP=0LD
//PTFMOD DD DSNAME=PROJECT.PTF.0BJECT,DISP=0LD
//SYSLIN DD *

(input object deck for a control section named FORT)

IDENTIFY FORT('LEVEL 03')

INCLUDE PTFMOD (CSECT4)

IDENTIFY CSECT4('PTF99999')

INCLUDE OLDMOD (PROG1)

IDENTIFY CSECT1('I/O ROUTINE'),

CSECT2('SORT ROUTINE'),

/ CSECT3('SCAN ROUTINE')
*

Execution of this example produces IDR records containing the following identification data:

« The component ID of the binder that produced the program object or load module, the binder version
and modification level, and the date of the current binder processing of the module. This information is
provided automatically irrespective of whether you specify an IDENTIFY statement.

« User-supplied data describing the functions of several control sections in the module, as indicated on
the IDENTIFY statements.

- If the language translator used supports IDR, the identification records produced by the binder also
contain the name of the translator that produced the object module, its version and modification level,
and the date of compilation.

The IDR records created by the binder can be referenced by using the LISTIDR option of the service aid
program AMBLIST. For instructions on how to use AMBLIST, see z/0S MVS Diagnosis: Tools and Service
Aids.

IMPORT statement

The IMPORT statement specifies an external symbol name to be imported and the library member or z/0OS
UNIX file name where it can be found. An imported symbol is one that is expected to be dynamically
resolved. The syntax of the IMPORT statement is:

IMPORT $CODE | DATA | CODE64 | DATA64%,
dllname, import_name[,offset]

112 z/0S: z/OS MVS Program Management: User's Guide and Reference

Control statement reference

{CODE | DATA | CODE64 | DATA64}
Mutually exclusive keywords that specify the type of symbol being imported.

If CODE or CODE64 is specified, the import_name must represent the name of a code section or entry
point. Specify CODE64 when using 64-bit addressing mode or specify CODE for any other addressing
mode.

If DATA or DATA64 is specified, the import_name must represent the name of a variable or data type
definition to be imported. Specify DATA64 when using 64-bit addressing mode or specify DATA for any
other addressing mode.

dliname
The name of the DLL module that contains the import_name to be imported. If it is a member of a PDS
or PDSE, it must be a primary name or an alias. The length is limted to eight bytes unless it is an alias
name in a PDSE directory. In that case, the limit is 1024 bytes. If it is a z/OS UNIX file, the file name is
limited to 255 bytes.

import_name
The symbol name to be imported. In programming terms, it represents a function or method
definition, or a variable or data type definition. This distinction is made by specifying either CODE,
CODE64, DATA, or DATA64. The import_name can be up to 32767 bytes in length.

offset
Offset consists of up to 8 hexadecimal characters. The offset will be stored with the DLL information
for an imported function. This is primarily for the use of Language Environment.

In order to continue a dllname or an import_name, code a nonblank character in column 72. Either blanks
or commas will be accepted as delimiters between parameters.

Placement: The IMPORT statement can be placed before, between, or after object modules or other
control statements.

Note:

1. The DYNAM(DLL) binder option must be specified for IMPORT statements to take effect (see Table 8
on page 72).

2. IMPORT statements are processed as they are received by the binder. However, symbol resolution is
not done against the imported symbols until the binder's final autocall is finished.

3. A bind job for a DLL application should include an IMPORT control statement for any DLLs that the
application expects to use. Otherwise, if the DLL name is unresolved at static bind time, it will not be
accessible at run time.

4. Ensure that the dllname matches the actual name of the DLL. Otherwise, import names will not be
resolved.

5. Typically, a dynamic link library will have an associated side file of IMPORT control statements, and
you will include this side file when statically binding a module that imports functions or variables from
that library. However, you can also edit the records in the side file or substitute your own IMPORT
control statements so that some symbols are imported from DLLs in a different library.

6. Modules with imported symbols can be saved only in PM3 or later format.

7. When you rebind a DLL, you must include the IMPORT statements. Information from the IMPORT
control statements is not retained from one bind to another if the object is stored as a PO1, PO2, or
PO3 format program objects. If you rebind a PO4 or higher program object, the IMPORT information
msaved from the previous bind will be brought in, unless the -NOIMPORTS option is specified.

8. Import control statements generated by the binder will contain quotation marks around both the
symbol name and the DLL name.

Example
IMPORT statements specify which symbols should be imported from a DLL provider or providers:
// EXEC PGM=IEWL,PARM="'MAP,XREF,CASE=MIXED'
//LOADMOD DD DSNAME=PROJECT . LOADLIB, DISP=SHR

Chapter 7. Binder control statement reference 113

Control statement reference

//O0BJECT1 DD PATH="'/s1/appl/pm3d3/d1l1la0l',6 PATHDISP=(KEEP,6KEEP)
//SYSLIN DD *

IMPORT CODE TAXES97,Compute_97_Taxes_Schedulel

IMPORT CODE TAXES97,Compute_97_Taxes_Schedule2

IMPORT CODE64 TAXESO3,Compute_03_Taxes_Schedulel

IMPORT CODE64 TAXESO3,Compute_03_Taxes_Schedule2

IMPORT DATA REVENUE,TotalRevenue

IMPORT DATA64 REVENUEO3,TotalRevenue03

INCLUDE OBJECT1

/%

In the example above, two 31-bit addressable functions from member TAXES97, two 64-bit addressable
functions from member TAXESO3, one 31-bit addressable data variable from member REVENUE, and
one 64-bit addressable data variable from REVENUEO3 are being imported. These members should be

in a dynamic link library, which can be found by the system search mechanisms at execution time. For
example, the dynamic link library containing these members could be part of the STEPLIB concatenation.

INCLUDE state